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1
Introduction

Over the last decade, machine learning has become an essential tool for medi-
cal image analysis. Improvements inmethodology, computer hardware, and an
increased availability of imaging data have enabled complex but effective mod-
els for a wide array of classification and segmentation tasks. Automatic image
analysis is more time-efficient, and sometimes even outperforms annotation
by human experts, for example, in terms of accuracy and reproducibility.

Machine learning methods learn from examples. In medical imaging,
these are usually images that were annotated by medical doctors, for example
with a label identifying a disease or a segmentation mask outlining some
anatomical structure. Labels can also be derived from other sources, such as
histopathology or clinical outcomes. The labelled examples are used to train a
model that can predict the labels of new, unlabelled images from other patients.
The model does this by looking for cues in pixel intensities and textures in the
images, which it associates with a specific target label based on what it learned
from the training examples.

The models that are produced in this way do not always generalize well to
data from new sources. Because they are trained on a specific set of examples,
the models learn features that work well for that specific domain. This works
fine if the new images are similar to the original data, but may cause problems
if the new images come from a domain with different characteristics – for
example, when analyzing images from another scanner or hospital. If the
model relies on features that are absent or have a different meaning in the new
domain, the performance in the new domain may suffer.
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CHAPTER 1 . I N TRODUCT ION

This problem is called domain shift: a model that was trained on images
from one domain (the source, e.g., scanner A) must be applied to a second
domain (the target, e.g., scanner B) where the images have different charac-
teristics. For example, Figure 1.1 shows images obtained with different MRI
settings: the images show the same anatomical structures, but their appearance
is different. As a result, a model that was trained on images made with one
setting may not automatically work for images made with the other settings.

Domain shift is a common problem in medical imaging, because it can
be time-consuming, expensive, or simply impractical to obtain and annotate
data for every new domain. In machine learning research, it is often necessary
to reuse existing datasets or to combine data from multiple sources to get
sufficiently large datasets. In clinical applications, companies that develop
medical imaging software might want to apply the same model to data from
many different scanners, with different settings, and from different hospitals.

Domain shift can be addressed by domain adaptation, a family of machine
learning methods that can adapt models that were trained on data from one
domain to work well for data from another. This is usually achieved in one
of two ways: by creating a single model that is domain-invariant and works
reasonably well for data from both domains at the same time, or by creating
a new, domain-specific model that is derived from the original model but is
adapted to the characteristics of the target domain.

In this thesis, we combine domain adaptation with deep learning, a popular
machine learning approach that forms the basis for most current models in
medical image analysis. Deep learning methods are based on representation
learning, using multi-layer neural networks to learn new representations from
the data. For images, this is usually implemented with convolutional neural
networks (CNNs). Starting from very simple representations based on simple
patterns, they extract increasingly abstract features until they obtain a high-
level representation that can be used to solve the prediction task.

Representation learning presents an ideal opportunity for domain adap-
tation: if you are learning a new representation of the data, why not learn a
representation that is domain-invariant? If images from different domains are
mapped to a common representation space, they can be analysed by a single
prediction model that works for all domains.
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T1 Contrast-enhanced T1 (T1+c)

T2 FLAIR

(a) BRATS [1] – brain tumor

Normal

Fat-suppressed

(b)OAI [2] – knee.

Figure 1.1: The appearance of medical images depends on the imaging settings. Left:
four different MRI sequences provide radically different images of the same
brain tumor. Right: two MRI images of the same knee, made with different
settings. A model trained on images from one domain (e.g., T1+c) may not
work well for data from another (e.g., FLAIR), because some features are
absent or have a different meaning. (Image derived from Chapter 4.)

In this thesis, we focusmainly onmethods that learn these domain-invariant
representations: representations at an intermediate level in a prediction model,
where images from different domains are represented in a similar way. An
alternative approach is image-to-image translation, which links the domains in
image space by mapping images from one domain to another. This approach
is less direct, as it requires a separate model to perform the translation.

There are two ways to model domain-invariant representations in a neural
network. One approach uses a shared feature encoder, extracting the same
features in the same way from all domains. This works best if the domains are
fairly similar. The other approach uses a separate encoding branch for each
domain. This is more flexible as it can extract features in a domain-specific
way that works best for each domain, but it is also more difficult to learn.
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Domain adaptation methods require information to learn the relation be-
tween the source and target domains. While it is sometimes sufficient to have
samples from the source domain and make assumptions about the similarities
and differences between domains, most methods require some samples from
the target domain. Some methods require paired samples, for example, images
of the same patient scanned in two scanners. Paired samples provide a very
strong link between domains, but are not always available. Other methods
require unpaired but labelled target samples, which are less informative but
easier to obtain. Finally, some methods require only unlabelled target samples,
which are easy to get but provide relatively little information.

Models for representation-based domain adaptation must solve two prob-
lems: they must learn the main prediction task, such as classification or seg-
mentation, and they must learn a domain-invariant representation. The main
prediction task can be learned using a standard, supervised learning objective
on labelled data from the source domain. The domain-invariant represen-
tation can be learned using an auxiliary domain adaptation objective that is
optimised concurrently with the main prediction task. Common choices for
this auxiliary objective are representation similarity, which uses paired samples
to minimise the difference between representations of the same sample across
domains, and feature distribution similarity, which does not require paired
samples but uses methods such as domain adversarial learning to match the
distributions of the representations for all samples across domains.

This thesis explores representation learning for domain adaptation in medical
image analysis. We aim to learn shared representations for data from different
domains, which allows us to use a single classification model that works for
multiple domains. In the following chapters, we investigate how to learn useful
representations and how to learn representations that work across domains,
we evaluate how these representations perform in cross-domain classification,
and we investigate the assumptions and limitations behind these methods.

• Chapter 2 investigates single-modality representation learning with hybrid
learning objectives, using restricted Boltzmann machines (RBMs) and a
combination of generative and discriminative learning to learn features for
two lung CT classification tasks. By focussing on features that are relevant
for classification, our models learn more informative features and achieve a
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higher classification accuracy. Hybrid learning objectives are used in later
chapters to combine standard generative or discriminative learning with a
domain adaptation objective.

• Chapter 3 investigates cross-modality image synthesis, using autoencoders
and RBMs to learn cross-modality representations and impute missing
MRI sequences for multi-modal brain segmentation. Synthesizing missing
images improves performance in applications with incomplete datasets,
e.g., when combining data from multiple sources with different modalities.
In the context of this thesis, image synthesis also provides a way to translate
images between domains.

• Chapter 4 investigates modality-invariant feature learning using convolu-
tional neural networks, which is evaluated in cross-modality classification
experiments in two multi-modal MRI datasets. Each network learns a
shared representation for data from different domains, which is then used
as input for a shared classification model. The classification performance in
cross-modality settings, training on data from one domain and evaluating
on another, comes close to that of same-modality classifiers that are trained
and evaluated on the same domain.

• Chapter 5 investigates the limits of representation learning in unpaired,
unsupervised domain adaptation, with experiments on synthetic data and
on MRI data from a multi-modal brain imaging dataset. While there
are many practical examples of successful domain adaptation in medical
imaging, the results are usually based on assumptions about similarities
between the domains. This chapter explores what these assumptions can
be and how they affect the domain adaptation results.

• Chapter 6 summarises and discusses the main findings of this thesis, looks
at limitations and future work, and formulates a general conclusion.
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2
Combining generative and

discriminative representation
learning for lung CT analysis with

convolutional RBMs

The choice of features greatly influences the performance of a classification system.
Despite this, many systems are built with standard, predefined filter banks that
are not optimized for that particular application. Representation learning meth-
ods such as restricted Boltzmann machines may outperform these standard filter
banks because they learn a feature description directly from the training data.
Restricted Boltzmann machines are unsupervised and are trained with a genera-
tive learning objective; this allows them to learn representations from unlabeled
data, but does not necessarily produce features that are optimal for classification.
In this chapter we propose the convolutional classification restricted Boltzmann
machine, which combines a generative and a discriminative learning objective.
This allows it to learn filters that are good both for describing the training data
and for classification. We present experiments with feature learning for lung
texture classification and airway detection in CT images. Results on both tasks
show that adding a discriminative objective offers consistent improvements over
the purely generative, unsupervised RBM. Additionally, combining the two objec-
tives offers improvements over just the discriminative objective in the lung tissue
classification task, increasing classification accuracy by 1 to 8 percentage points.
This shows that discriminative learning can help an otherwise unsupervised
feature learner to learn filters that are optimized for classification.
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REPRESENTAT ION LEARN ING WITH CONVOLUT IONAL RBMS

Chapter based on
G. van Tulder and M. de Bruijne, “Combining Generative and Discriminative
Representation Learning for Lung CT Analysis With Convolutional Restricted
Boltzmann Machines,” IEEE Transactions on Medical Imaging, vol. 35, no. 5,
pp. 1262–1272, 2016. doi: 10.1109/tmi.2016.2526687.
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2 . 1 . I N TRODUCT ION

2.1 Introduction

Most methods for automated image classification do not work directly with
image data, but first extract a higher-level description of useful features from
the image. The choice of features determines a large part of the classification
performance. Which features work well depends on the nature of the classifi-
cation problem: for example, some problems require features that preserve
and extract scale differences, whereas other problems require features that
are invariant to those properties. Often, feature representations are based
on standard filter banks of common feature descriptors, such as Gaussian
derivatives that detect edges in the image. These predefined filter banks are
not specifically optimized for a particular problem or dataset.

As an alternative to such predefined feature sets, representation learning or
feature learning methods [3] learn a high-level representation directly from
the training data. Because this representation is learned from the training
data, it can be optimized to give a better description of the data. Using this
learned representation as the input for a classification system might give a
better classification performance than using a generic set of features.

In this chapter, we focus on unsupervised models that are trained with
unlabeled data. While this can be an advantage because it makes it easier to
create a large training set, it can also lead to suboptimal results for classifica-
tion, because the features that these methods learn are not necessarily useful
to discriminate between classes. Unsupervised feature learning tends to learn
features that model the strongest variations in the data, while classifiers need
features that discriminate between classes. If the variation between samples
from the same class is much stronger than the variation between classes, fea-
ture learning is likely to produce features that capture primarily within-class
variation. If those features do not represent enough between-class variation,
they might give a lower classification performance if they are used as the input
for a classification model.

This issue of within-class variation is relevant for many applications, in-
cluding those in medical image analysis. For example, in disease classification,
the differences between patients are often greater than the subtle differences
between disease patterns. As a result, representation learners might learn
features that model these between-patient differences, rather than features
that improve classification performance.
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In this chapterwe study the restrictedBoltzmannmachine (RBM), a popular
representation learning model, as a way to learn features that are optimized
for classification. The standard RBM does not include labels and is trained
with an unsupervised, generative learning objective. The classification RBM
[4], an extension of the standard RBM, does include label information and can
also be trained with a discriminative learning objective. This discriminative
learning objective optimizes the classification performance of the classification
RBM. The generative and discriminative objectives can be combined to learn
discriminative features that represent the data and are useful for classification.

We propose the convolutional classification RBM, which combines the
classification RBM with the convolutional RBM, another extension of the
standard RBM. The convolutional RBM [5–8] uses the convolutional weight-
sharing pattern from convolutional networks to learn small filters that are
applied to every position in a larger image. This weight sharing makes learning
more efficient and allows the RBM to model small features that occur in
multiple areas of an image, which is useful for describing textures.

The ability to combine generative and discriminative learning objectives
distinguishes the classification RBM from many other representation learning
methods. Unsupervised models such as the standard RBM are usually trained
with only a generative learning objective, whereas supervised representation
learning methods, such as convolutional neural networks [9], are usually
trained with only a discriminative learning objective. The classification RBM
can be trained with a generative objective, a discriminative objective, or both.

We present experiments on lung tissue classification and airway detection.
For the lung tissue classification experiments we used a dataset on interstitial
lung diseases (ILD) [10] with CT images of 73 patients. Previous tissue classi-
fication work on this dataset used wavelets [11–14], local binary patterns [15,
16], bag-of-visual-words [17, 18], filter banks derived from the discrete Fourier
transform [19], RBMs [20, 21], and convolutional neural networks [22].

We used RBMs to learn features for lung tissue classification. From the
images, we first extracted 2D patches that we used to train RBMs with different
mixtures of discriminative and generative learning. Using the RBM-learned
representations, we trained and evaluated classifiers that classify each patch
in one of the five tissue classes. We compared those results with those of two
standard filter banks.
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2 . 2 . R E LATED WORK

We expected the effect of discriminative learning to become less important
for larger representations (more hidden nodes in the RBM), because larger rep-
resentations are more likely to contain sufficient discriminative features even
without explicit discriminative learning. To study this effect, we performed
airway detection experiments on lung CT images from the Danish Lung Can-
cer Screening Trial (DLCST) [23]. We used non-convolutional classification
RBMs with different mixtures of discriminative and generative learning to
learn features for this dataset. The non-convolutional RBMs allowed us to
experiment with larger numbers of hidden nodes.

This chapter is organized as follows. Section 2.2 gives an overview of other
relevant representation learning work. Section 2.3 describes the RBM and its
learning algorithm. Section 2.4 introduces the datasets and the experiments.
Section 2.5 describes the results. Sections 2.6 and 2.7 conclude the chapter.

2.2 Related work

Representation learning methods have been used for tissue classification in
lung CT before. In experiments similar to those presented in this chapter
and using the same ILD dataset, Li et al. [20] used RBMs to extract features.
Whereas we use classification RBMs with convolution to learn small filters,
Li et al. trained standard (non-convolutional) RBMs on small subpatches
extracted from the patch that is to be classified. In later work [21] on the same
dataset, Li et al. reported that convolutional neural networks gave a slightly
better performance than standard RBMs. Gao et al. [22] used convolutional
neural networks to classify full slices from the ILD dataset, without requiring
manually annotated ROIs. Schlegl et al. [24] also used convolutional neural
networks to classify lung tissue in a different lung CT dataset.

Convolutional neural networks have also been used in other applications
of lung CT, such as the detection of lung nodules and lymph nodes. In an
early application of convolutional neural networks, Lo et al. [25, 26] trained a
network to reject or confirm potential lung nodules selected in a preprocessing
step. More recently, Shen et al. [27] used multi-scale convolutional networks to
compute features for lung nodule classification. Kumar et al. [28] used multi-
layer autoencoders to extract features for the classification of lung nodules.
Roth et al. [29] proposed a so-called 2.5D convolutional neural network that
samples orthogonal 2D views to detect lymph nodes in lung CT images.
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To our knowledge, classification RBMs have not been applied to lung CT
images before, and there are only a few applications in other types of medical
image analysis. Shin et al. [30] used classification RBMs to detect micro-
calcifications in digitized mammograms. Berry and Fasel [31] used transla-
tional deep Boltzmann machines, which are related to classification RBMs, to
analyze ultrasound images of the tongue. Schmah et al. [32] analyzed fMRI
data with RBMs with generative and discriminative learning.

2.3 Restricted Boltzmann machines

2.3.1 Standard RBM

A restricted Boltzmann machine is a probabilistic neural network that learns
the probability distribution of its inputs v and a hidden representation h. The
visible nodes v represent the voxels of an input patch. To model the patches
from our lung CT images, we use Gaussian visible nodes v and binary hidden
nodes h (see [33] for a description of these node types). Each visible node v i
has an undirected connection with weight Wi j ∈ R to each hidden node h j .
The model also includes a bias b i ∈ R for each visible node v i and a bias c j ∈ R
for each hidden node h j . Together, the weights and biases define the energy
function of the RBM:

E (v, h) =∑
i

(v i − b i)2

2σ 2
i

−∑
i , j

v i
σi
Wi jh j −∑

j
c jh j , (2.1)

where σi is the standard deviation of the Gaussian noise of visible node i. We
normalize the training patches such that σi = 1. The joint distribution of the
input v and hidden representation h is defined as

P (v, h) = exp (−E (v, h))
Z

, (2.2)

where Z is a normalization constant. The conditional probabilities for the
hidden nodes given the visible nodes and vice versa are

P (h j ∣ v) = sigm(∑
i
Wi jv i + c j) and (2.3)

P (v i ∣h) = N (v i ∣∑
j
Wi jh j + b i , σ 2

i ), (2.4)

where sigm (x) = 1
1+exp(−x) is the logistic sigmoid function andN (x ∣ µ, σ 2 )

is a Gaussian probability density function with mean µ and variance σ 2.
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2.3.2 Classification RBM

The standard RBM is an unsupervised model. The classification RBM [4]
extends the standard RBM by adding a set of label nodes to the visible layer
(Figure 2.1). This allows the RBM to learn the joint probability of the input, the
hidden representation, and the label. The label nodes use a one-hot coding,
where there is one node yk per class such that yk = 1 if the sample belongs
to class k and yk = 0 otherwise. The label nodes have a bias dk ∈ R and
are connected to the hidden nodes, with a connection with weight Uk j ∈
R between label node yk and hidden node h j . The energy function of a
classification RBM with Gaussian visible nodes is

E (v, h, y) =∑
i

(v i − b i)2

2σ 2
i

−∑
i , j

v i
σi
Wi jh j −∑

j
c jh j

−∑
k , j

ykUk jh j −∑
k
dk yk .

(2.5)

The energy function defines the distribution

P (v, h, y) = exp (−E (v, h, y))
Z

(2.6)

and the conditional probabilities

P (h j ∣ v, y) = sigm(∑
i
Wi jv i +∑

k
Uk j yk + c j) and (2.7)

P (yk ∣h) = sigm(∑
j
Uk jh j + ck). (2.8)

The visible nodes and the label nodes are not connected, so the expression for
P (v i ∣h) is unchanged from the standard RBM. The posterior probability for
classification is

P (y ∣ v ) =
exp (dy +∑ j softplus (c j +U j y +∑i Wi jv i))

∑y∗ exp (dy∗ +∑ j softplus (c j +Uy∗ j +∑i Wi jv i))
, (2.9)

where softplus (x) = log (1 + exp (x)). This definition only works for RBMs
with binary hidden nodes: it implicitly sums over all possible states of the
hidden layer, which can be done efficiently if each hidden node can take one
of only two values [4].
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hidden h

input v label y

W U

Figure 2.1: Schematic view of the classification RBM, which adds a set of label nodes
to the visible layer of the standard RBM. The label nodes are connected to
the input nodes through the hidden layer.

2.3.3 Generating samples and classifying with RBMs

RBMs are probabilistic models that define the activation probability for each
node given all other nodes. In practice, computing the probability of a partic-
ular state v, h is impossible, because the normalization constant or partition
function Z in the energy function is infeasible to compute for any but the
smallest models. However, since it is possible to compute the conditional
probabilities, we can still use Gibbs sampling to sample from the model. Gibbs
sampling alternately samples from the hidden and visible layers. Given a ran-
dom initialization of the visible and label nodes, the new state of the hidden
nodes can be sampled using the distribution p (ht ∣ vt , yt ). Then, keeping the
hidden nodes fixed, the new activation of the visible and label nodes can be
sampled from p (vt , yt ∣ht ). This can be repeated for several iterations, until
the model converges to a stable state. For simplicity, we used a fixed number
of iterations in our experiments.

Classifying a patch using the classification RBM is more straightforward.
We input the patch values in the visible layer v and use Equation (2.9) to
compute the posterior probability P (y ∣ v ) for each class. We assign the label
of the class with the highest posterior probability.

2.3.4 Learning objectives

At training time, the weights and biases of the standard RBM are chosen to
optimize the generative learning objective log P (vt), the probability distribu-
tion of each input image t. The classification RBM can be trained with the

14
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generative learning objective log P (vt , yt), which optimizes the joint proba-
bility distribution of the input image and the label. A classification RBM can
also be trained with the discriminative objective log P (yt ∣ vt ), which only
optimizes the classification and does not try to optimize the likelihood of the
input image. Larochelle et al. [4] suggest a hybrid objective

β log P (vt , yt) + (1 − β) log P (yt ∣ vt ), (2.10)

where β ∈ [0, 1] is the proportion of generative learning. We will use this
objective with different values for β in our feature learning experiments.

The normalization constant or partition function Z makes it unfeasible to
compute the gradient of the generative learning objective. Instead, we use
Gibbs sampling and contrastive divergence [33] to estimate the stochastic
gradient descent updates for our RBMs. Contrastive divergence provides an
efficient approximation for the gradient-based updates to the weights and
biases of the model.

Classification RBMs are slightly more computationally expensive than un-
supervised RBMs, because they use an additional discriminative learning
objective and include extra weights to connect the label nodes. In practice
however, we find that the classification RBMs are not much slower than the un-
supervised RBMs, because the additional complexity from the discriminative
components is small compared with the other parts of the RBM. The number
of labels and the number of associated weights is usually much smaller than the
number of connections between the visible and hidden layers, and the discrim-
inative learning objective can be computed much faster than the generative
objective, which requires contrastive divergence and Gibbs sampling.

2.3.5 Convolutional RBM

Designed to model complete images instead of small patches, convolutional
RBMs [5–8] use the weight-sharing approach from convolutional neural net-
works. Unlike convolutional neural networks, convolutional RBMs are gen-
erative models and can be trained in the same way as standard RBMs. In a
convolutional RBM, the connections share weights in a pattern that resembles
convolution, with M convolutional filters Wm that connect hidden nodes
arranged in M feature maps hm (Figure 2.2). The connections between the
visible nodes and the hidden nodes inmapm use the weights from convolution

15
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⋯

W1 W2 WM

WM

h1 h2 hM

input image v

Figure 2.2: Schematic view of the convolutional RBM, which uses a convolutional
weight-sharing arrangement to reduce the number of connection weights.

filter Wm , such that each hidden node is connected to the visible nodes in its
receptive field. The visible nodes share one bias b; all hidden nodes in map m
share the bias cm . With the convolution operator ∗ we define the probabilities

P (hm
i j ∣ v) = sigm((W̃m ∗ v)i j + cm) and (2.11)

P (v i j ∣h) = N (v i j ∣ (∑
m
Wm ∗ hm)i j + b, 1), (2.12)

where W̃m is the horizontally and vertically flipped filter Wm , and ⋅ i j denotes
the voxel on location (i , j).

Convolutional RBMs can produce unwanted border effects when recon-
structing the visible layer, because the visible nodes near the borders are only
connected to a few hidden nodes. We pad our patches with voxels from neigh-
boring patches, and keep the padding voxels fixed during the iterations of
Gibbs sampling.

16
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feature maps h1 , h2 , . . . , hM

input image v

labels y

W1 , . . . ,WM

U

Figure 2.3: Schematic view of the convolutional classification RBM. The connection
weights U are shared between all nodes in a feature map.

2.3.6 Convolutional classification RBM

We introduce a convolutional classification RBM that includes visible, hidden
and label nodes (Figure 2.3) and can be trained in a discriminative way. The
visible nodes are connected to the hidden nodes using convolutional weight-
sharing, as in the convolutional RBM, and the hidden nodes are connected
to the label nodes, as in the classification RBM. In our patch-based texture
classification problem, the exact location of a feature inside the patch is not
relevant, so we use shared weights to connect the hidden nodes and the label
nodes. All connections from a label node yk to a hidden node hm

i j in map m
share the weight Ukm . The activation probabilities are

P (yk ∣h) = sigm(∑
m
Uym∑

i , j
hm
i j + dk) and (2.13)

P (hm
i j ∣ y) = sigm((W̃m ∗ v)i j +∑

k
Ukm yk + cm). (2.14)

Since the label nodes are not connected to the visible nodes, the probability
for the visible nodes is unchanged from the convolutional RBM.
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2.4 Experiments

We present experiments on lung CT images for two applications and datasets:
lung tissue classification and airway centerline detection. On the lung tissue
dataset, we studied the effects of combining generative and discriminative
learning objectives. On the airway dataset, we explored how these effects
change if the representation is larger (more hidden nodes).

2.4.1 Dataset 1: Lung tissue classification

Purpose. This set of experiments studied the effect of combining generative
and discriminative learning objectives. We trained RBMs with purely dis-
criminative (β = 0), with purely generative (β = 1), and with mixed learning
objectives. We then used the RBM-learned filters to compute feature vectors
and train a classifier. The classification accuracy gives an indication of the
quality of the learned representations.

Data. We used a publicly available dataset on interstitial lung diseases (see
[10] for a description). In this texture classification problemwith 73 scans from
different patients, we classify patches of five types of lung tissue. The in-plane
voxel size varies between 0.4 − 1 mm, with a slice thickness of 1 − 2 mm and
inter-slice spacing of 10 − 15 mm. The dataset provides hand-drawn 2D ROIs
with labels for a subset of slices in each scan (Figure 2.4). Following other
work on this dataset (e.g., [13]), we extracted patches of 32 × 32 voxels along a
grid with a 16-voxel overlap. We include a patch if at least 75% of the voxels
belong to the same class. We classify patches from the five most common
tissue types in the dataset (healthy tissue: 22%, emphysema: 3%, ground glass:
16%, fibrosis: 15%, micronodules: 44% of the patches).

Experiments. We used the convolutional RBM, with and without labels, to
learn filters from the patches in the lung tissue dataset. We then used these
filters in a convolution to get feature maps for each of the patches in the dataset.
For each featuremap, we computed a histogramof the feature activations, using
adaptive binning [34] over all patches in the training set. The concatenated
histograms form the feature vector for each patch. We trained random forest
classifiers to classify each patch in one of the five tissue classes.
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Figure 2.4: First dataset. Example from the interstitial lung disease scans. The annota-
tion (right) shows an ROI (red) marked as micronodules.

Normalization. We trained the RBMs on normalized patches, with each patch
normalized to zero mean intensity and unit standard deviation. We used
unnormalized patches to compute the featuremaps and histograms, to preserve
the intensity differences between patches.

Baselines. We compare the results of the RBMs with those of several other
methods. First, we show the performance of using random filters, using the
same convolutional architecture but without optimizing the filter weights (see
Figure 2.5 for an example). The results of random filters help to separate the
contribution of feature learning from that of the convolutional architecture
[35]. We also compare the RBM-learned filters with two of the frequently-used
standard filter banks discussed by Varma and Zisserman [36]: the Leung-Malik
and Schmid filter banks (Figure 2.5). The filter bank of Leung and Malik [37]
is a set of Gaussian filters and derivatives, with 48 filters of 32 × 32 voxels. The
filter bank of Schmid [38] has 13 filters of 31 × 31 voxels with rotation-invariant
Gabor-like patterns.

Implementation and parameters. We implemented the RBMs in Python using
the Theano library [39] and used the random forest implementation from
Scikit-learn [40]. To optimize the learning parameters for the RBMs and
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Figure 2.5: Two filter banks: Leung-Malik (left) and Schmid (middle), generated with
code from https://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html.
An example of random filters (16 filters of 8 × 8 voxels) is shown right.

random forests, we performed a grid search using nested cross-validation
with patches from the same scan grouped in the same fold. We tried various
learning rates for the RBM (10−3 to 10−9). For the random filters, we chose
the best filter set out of five random initializations. We used 2 to 8 bins in
the adaptive binning step. For the random forests, we varied the number of
trees (10 to 200) and the maximum number of features (1 to 256), and used
Scikit-learn’s default parameters for the other settings.

The initial values for the connection weights W of the RBM were sampled
from a normal distribution with mean 0 and standard deviation 10−6. The
initial values for the connection weights U of the classification RBMs were
sampled from a uniform distribution [−10−6 , 10−6]. All biases had the initial
value 0. During stochastic gradient descent we used a minibatch size of 5, with
one Gibbs sampling step for contrastive divergence.

Cross-validation. Almost all scans have manually-drawn ROIs for only one
tissue type. We organized the scans in five folds, of 15 or 14 scans each, while
trying to create a similar class distribution in each fold. We present the cross-
validation accuracy over all five folds. In each cross-validation step we used
one fold for testing and the remaining four folds for classifier training and
parameter tuning. For each fold, we computed the mean accuracy over all
patches. Within each cross-validation step, we optimized the RBMand random
forest parameters using nested cross-validation with one validation and three
training folds. We used the parameters that gave the best accuracy over the
four folds to train a classifier on the full training set, which we then used to
classify the patches from the scans in the test fold.
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Figure 2.6: Second dataset. In the airway dataset, we extract patches at the airway
centerline (green) and non-airway samples (red) close to the airway.

We report the mean classification accuracy over all five folds in the cross-
validation. We used the Wilcoxon signed-rank test to test for significant
differences between methods (p < 0.05). In these tests we compared the
classification accuracy per scan (73 measurements per method).

2.4.2 Dataset 2: Airway centerlines

In our second set of experiments we explored the influence of the size of
the representation – the number of hidden nodes in the RBM. Since it was
computationally unfeasible to train the convolutional RBM with a very large
number of filters, we performed these experiments on a different problem
with a classification RBM without convolution. We used 40 lung CT scans
from 20 participants of the Danish Lung Cancer Screening Trial (DLCST)
[23]. The voxel size is approximately 0.78 × 0.78 × 1 mm. Using the output
of an existing segmentation algorithm [41] to find the airways (Figure 2.6),
we extracted patches of 16 × 16 voxels at the center point of airways with a
diameter of 16 voxels or less. For each airway patch, we created a non-airway
sample by extracting a patch at a random point just outside the outer airway
wall. We selected a random subset of 500 patches per scan. We used 15 subjects
(30 scans, 15 000 patches) as our training set and 5 subjects (10 scans, 5 000
patches) for testing.
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The implementation and parameters were similar to those for the tissue
classification dataset, with a few differences. Because the airway in this dataset
is always in the center of the patch, we could use RBMs without convolution
to learn a representation. We used between 1 to 256 nodes in the hidden
layer. We used the scans from the training set to train classification RBMs and
standard RBMs. Using the representation in the hidden layer of the RBM to
create the feature vectors, we trained random forests to classify airway and
non-airway voxels. We optimized the parameters of the random forests using
cross-validation on the training set. We report the classification accuracy of
the classification RBMs and of the random forests on the test set.

2.5 Results

2.5.1 Filters

Figure 2.7 shows filters learned by the RBM from the lung tissue classification
dataset, for various mixtures of generative and discriminative learning. Be-
cause of the random initialization, each set of filters looks different, but we
observed no consistent visual difference between filters learned with discrimi-
native or generative learning. The filters are useful for the classificationmodels,
but there are no recognizable structures. With the non-convolutional RBM,
which we used for the airway dataset, the filters show more recognizable struc-
tures (Figure 2.8). The filters show circular structures that resemble the airways
in the training set: a centered, dark circle to represent the airway, and white
blobs that could represent the vessel that is often next to the airways. With a
small number of filters, the RBM learned more general filters, whereas an RBM
with more filters learned filters that can represent more specific structures.

2.5.2 Random forest classification

Figure 2.9 shows the random forest classification results comparing RBM-
learned filters with different filter banks. The classification accuracy achieved
using theRBM-learned filterswith the best βwas better than that using random
filters or one of the predefined filter banks. Random filters and, in most cases,
the Schmid filters performed significantly worse than the RBM-learned filters.
The difference with the Leung-Malik filter bank was often not significant. The
best performance was achieved using 16 filters of 5 × 5 voxels.
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β = 0 β = 0.01 β = 0.1 β = 1

discriminative mixed generative

Figure 2.7: Example filters learned from the ILD dataset, with different mixtures of
generative and discriminative learning (16 filters of 8 × 8 voxels).

Figure 2.8: Filter sets learned from the airway data: 4, 36 or 100 filters of 16× 16 voxels,
learned with a mix of discriminative and generative learning (β = 0.01).

Pure generative or discriminative learning usually performed worse than a
mixture of learning objectives. The effects of using different values for β were
most visible with the larger filters. At most filter sizes, except for very small or
very few filters, using a combination of generative and discriminative learning
seems to give better results than using purely generative or discriminative
learning. The classification accuracy increases as β decreases, until it decreases
again when there is too much discriminative learning, which increases the
risk of overfitting.

2.5.3 RBM classification

We also evaluated the classification performance of the RBM itself, using Equa-
tion (2.9) to compute the posterior probability for each class. The accuracy of
the RBM was always lower than that of the random forests (Figure 2.10). With
only a generative learning objective, the classification accuracy of the RBMwas
poor, presumably because this model optimized only for representation and
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not for classification. Using the discriminative learning objective improved
the accuracy, but it was still significantly lower than that of a random forest
trained on the RBM hidden layer. One reason may be that the classification
model of the RBM is much simpler than that of the random forests. The RBM
has a linear decision function (given the state of the hidden layer) and does
not compute histograms of the feature activations. In addition, the RBM opti-
mization may be complicated by the fact that the RBM optimizes two things
at the same time (representation and classification).

2.5.4 Influence of the size of the representation

We explored the effects of the filter size and the number of filters on the
classification performance. We expected that discriminative learning would
become less important as the number of filters increases, because a larger
representation is more likely to include discriminative features even with
generative learning.

Figure 2.9 shows the results for multiple network configurations with dif-
ferent filter sizes and numbers of filters on the tissue classification problem.
There seems to be a connection between the number of filters and the point at
which the accuracy increases. With more filters, more discriminative learning
(a smaller β) is needed. This could be a consequence of the implementation of
the gradients of the energy function: in an RBM with many filters, the values
in the energy function (and the corresponding gradients) might be larger
than when the number of filters is smaller. The number of filters influences
the gradient for the generative learning objective, but not the discriminative
objective. To achieve the right balance between discriminative and generative
learning, the β should be smaller for smaller number of filters to compensate
for the larger gradients. Note that the number of filters is relatively small (up
to 36), which may make generative learning less effective.

For a closer look at the effect of the representation size, we performed
additional experiments with non-convolutional RBMs on the airway dataset
(Figure 2.11) and a larger number of filters. On this dataset, using only ormostly
discriminative learning generally gave the best results. The performance of
generative learning depended on the number of hidden nodes. With only a
few hidden nodes, generative learning performed worse than discriminative
learning. As we increased the size of the representation, the gap between gen-

25



CHAPTER 2 . COMB IN ING GENERAT IVE AND D I SCR IM INAT I V E
REPRESENTAT ION LEARN ING WITH CONVOLUT IONAL RBMS

erative and discriminative learning almost disappeared. This seems to agree
with our hypothesis that at the smaller representations, the discriminative ob-
jective helps to learn discriminative features, whereas the generative objective
produces features that are useful for representation but are less discriminative.
As we increased the number of hidden nodes, generative learning produced
enough features to also include some of the discriminative features.

2.6 Discussion

We have shown how the classification RBM can be used to learn useful features
for medical image analysis, achieving a mean classification accuracy that
was better than or close to that achieved using a predefined set of features.
To get good classification results in feature learning, it is important to use
the right learning objective. We found that adding label information and
discriminative learning to the standard RBM helps to produce filters that
improve performance. In some cases pure discriminative learning worked
best, but in most cases a mixture with generative learning gave better results.
The results show that RBM-learned filters have an advantage over random
filters and two standard filter banks.

Random filters performed quite well in our experiments, although they
generally performed worse than the filter banks and RBM-learned filters. The
surprisingly good performance of random filters has already been noted in
the literature [35]. When the number of filters is large enough, convolution
with random filters can provide useful features to train a classifier. The perfor-
mance of random filters is a useful baseline because it allows us to separate the
contribution of the convolutional architecture from that of the feature learning
algorithm. The performance difference between learned and random filters
indicates that the improvement is not just an effect of using a convolution
operator with a number of arbitrary filters.

2.6.1 Results on the ILD dataset

TheILDdataset [10]was also used in other papers. Wewill give a brief overview
of the techniques and the results before comparing them with our own.

Depeursinge et al., the providers of the dataset, used wavelet transforms
and intensity and gradient features [11–13] to classify tissue patches. They also
used this tissue classification system as a component of a larger image retrieval
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Figure 2.10: The RBM classification accuracy on the lung tissue classification dataset,
for different feature representationmethods. Large squares indicate results
that are not significantly different from the best result for that network
configuration. (All significance values were computed using Wilcoxon
signed-rank tests comparing the per-scan classification accuracies.)

system [14]. From the same group, Foncubierta-Rodríguez et al. [17] proposed
a retrieval system based on visual words. The five-class classification accuracy
reported in these papers ranges between 76.1% and 80.8%.

Song et al. used texture, intensity and gradient features, combined with
features based on rotation-invariantGabor-local binary patterns andhistogram
of oriented gradients. Song et al. [15] first used a dictionary to approximate
the test patch using training patches and then used the approximation error
to classify the patch. They combined this approach with a large-margin local
estimate method to cluster example patches [16], with a reported classification
accuracy of 86.1%. A related method [42], also based on clustering, provided a
85.8% classification accuracy. Earlier, the same authors also used local binary
patterns [43] and boosting [44].

Asherov et al. [18] used bags of visual words to classify patches, reporting
an accuracy of 79%. Anthimopoulos et al. [19] used filter banks derived from a
discrete cosine transform, which performed better than Leung-Malik, Schmid,
Gabor and MR8 filters. Dash et al. [45] presented segmentation methods using
Markov random fields, Gaussian mixture models and mean-shift algorithms.
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Several papers applied representation learning methods to the ILD dataset.
Li et al. presented experiments using RBMs to extract features [20], which
gave a classification accuracy of 77%. In a later comparison, Li et al. reported
that convolutional neural networks gave a slightly better performance [21] (no
accuracy given). Gao et al. [22] used convolutional neural networks to classify
full slices, without requiring manually annotated ROIs. Their patch-based
classification showed a classification accuracy of 87.9%.

It is difficult to compare the results of our experiments with those in the
previously published studies. Although many papers use a similar approach
to extract patches, there are differences in cross-validation procedures and in
the number of patches. Overall, our classification results seem to be in the
same range, but worse than the state-of-the-art results [16]. Part of this may
be due to a difference in training set size – the papers with better results use
leave-one-patient-out cross-validation (e.g., [16]), whereas we used five-fold
cross-validation for computational reasons. Other differences may also be
important, such as the number of features (we used a relatively small number
of filters, also for computational reasons) and the amount of post-processing.

2.6.2 How much discriminative learning is required?

There is no single optimal mixture of discriminative and generative learning.
The optimal choice for β depends on the number and size of the filters, on
the application, and on the dimensions of the data. The results from our
lung tissue classification experiments (Figure 2.9) show that the influence of β
is strongest for RBMs with larger filters, with lower β (more discriminative
learning) giving a better classification accuracy. The effect of the number of
filters or the number of hidden nodes is more easily visible in the results of the
airway centerline experiments (Figure 2.11), which show that discriminative
learning becomes less important for models with more hidden nodes. Some
of these trends will be a result of the definition of the generative learning
objective, which is derived from an energy function that tends to be larger
for RBMs with many connections (more or larger filters). The remainder of
the effect may be explained by the difficulty of finding a set of discriminative
features. This difficulty is influenced by two factors: the number and the size
of the filters. A model with only a few filters may require more discriminative
learning than a model with many filters: a large set of filters is more likely to
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contain some that are useful for classification even if the filters are learned
with generative learning, but with a small set of filters it is necessary to be
selective. Similarly, a model with large filters may require more discriminative
learning than a model with small filters, because the model with larger filters
has a larger search space: a model with larger filters can find more different
filters, which makes it more important to be selective.

Theoptimal β also depends on the application and dataset. If it is difficult for
the RBM to learn the classification rule, such as in our lung tissue classification
experiments, a mixture with generative learning proved to work better than
purely discriminative learning. On a somewhat easier problem such as our
airway centerlines, purely discriminative learning often also gave good results.

Finally, the optimal mixture depends on the dimensions of the input data.
In this work, we chose to do feature learning and classification in 2D, because
the lung tissue data that we used in our experiments is highly anisotropic and
has only 2D annotations. However, given the right training data, the methods
discussed in this work can be extended to 3D. Having 3D inputs increases
computational complexity, which is sometimes a reason to use pseudo-3D, as
in [29] where 3D data is modeled with a set of orthogonal 2D planes. If real
3D is used, it is important to limit the number of filters. At the same time, a
3D model will require more filters to model the training patches effectively. In
those cases a mixture of generative and discriminative learning could help to
learn fewer but better filters.

2.6.3 Further considerations

Since the mixture of generative and discriminative learning objectives can
improve performance for RBMs, it might be interesting to try this combina-
tion for other representation learning methods, such as convolutional neural
networks, deep belief networks or deep Boltzmann machines. However, this
requires definitions for both the generative and the discriminative objective.
Defining suchmixed learning objectives could be difficult formanymulti-layer
networks. In this work we used single-layer RBMs, for which it is straightfor-
ward to combine discriminative and generative learning objectives. A similar
combined objective could be defined for deep Boltzmann machines – which
are similar to RBMs but have multiple layers that are trained at the same time –
by adding a label component to the top layer and using a combined learning
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objective to update the weights in all layers of the model. This approach only
works for models in which all layers can be trained at the same time using both
learning objectives. In practice, deep Boltzmann machines are often initialized
with layer-wise pre-training [46], and since this initialization influences the
final solution, it may be important to include a discriminative objective in this
first phase as well. A similar problem applies to deep belief networks, which
consist of stacked RBMs that are also trained layer-by-layer [47]. In both
approaches, including a temporary label component while training the lower
layers might provide a solution. In convolutional neural networks, all layers
are trained at the same time, but usually only using a discriminative objective.
Unsupervised generative pre-training can give good results [48] by using a
generative learning objective to initialize weights that are then refined with a
discriminative learning objective, but this approach separates the generative
and discriminative training. This may give worse results than training with a
combined objective. Classification RBMs have the advantage that they can be
trained with generative and discriminative objectives simultaneously.

Although we found that learned filters could outperform the predefined
filter banks in our experiments, the predefined filter banks had one obvious
advantage: they did not have to be learned. Learning the filters can take some
time, depending on the implementation, the hardware and the number and
size of the filters (in our tissue classification experiments, training one RBM
with 16 filters of 8 × 8 pixels took approximately 4 days using two CPU cores).
The runtime of the classification RBMswas not longer than that of the standard
RBMs. Once the features have been learned, however, computing features
and training and applying the classifiers does not require more time than with
predefined filter banks.

2.7 Conclusion

We presented experiments with convolutional classification RBMs, which we
trained with generative and discriminative learning objectives. Feature learn-
ing is usually done with a purely generative learning objective, which favors a
representation that gives the most faithful description of the data but is not
always the representation that is best for the goal of the system. This chapter
showed how the standard generative learning objective of an RBM can be
combined with a discriminative learning objective. In our experiments evalu-
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ating the classification accuracy of random forests using RBM-learned features,
we found that a mixture of discriminative and generative learning objectives
often gave a better classification accuracy than generative or discriminative
learning alone. The features learned with the mixed learning objective gave
better results than several standard filter banks. Our results suggest that adding
discriminative learning is most useful when learning smaller representations,
with fewer filters or hidden nodes.
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Figure 2.11: Classification accuracy on the airway dataset, showing the influence of the
number of hidden nodes in the RBM representation on the classification
accuracy, for different mixtures of discriminative and generative learning.
The graph on the left shows the classification accuracy of the classification
RBM.The graph on the right shows the classification accuracy of a random
forest using the RBM-learned filters.
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3
Why does synthesized data improve

multi-sequence classification?

The classification and registration of incomplete multi-modal medical images,
such as multi-sequence MRI with missing sequences, can sometimes be improved
by replacing the missing modalities with synthetic data. This may seem counter-
intuitive: synthetic data is derived from data that is already available, so it does
not add new information. Why can it still improve performance? In this chapter
we discuss possible explanations. If the synthesis model is more flexible than the
classifier, the synthesis model can provide features that the classifier could not
have extracted from the original data. In addition, using synthetic information
to complete incomplete samples allows them to be used by a model that requires
all modalities, increasing the effective size of the training set.

We present experiments with two classifiers, linear support vector machines
(SVMs) and random forests, together with two synthesis methods that can replace
missing data in an image classification problem: neural networks and restricted
Boltzmann machines (RBMs). We used data from the BRATS 2013 brain tumor
segmentation challenge, which includes multi-modal MRI scans with T1, T1 post-
contrast, T2 and FLAIR sequences. The linear SVMs appear to benefit from the
complex transformations offered by the synthesis models, whereas the random
forests mostly benefit from having more training data. Training on the hidden
representation from the RBM brought the accuracy of the linear SVMs close to
that of random forests.
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3 . 1 . I N TRODUCT ION

3.1 Introduction

Multi-sequence data can be very informative in medical imaging, but using it
may cause some practical problems. Training a classifier on multi-modal data,
for instance, generally requires that all modalities are available for all samples.
If some modalities are missing, there is a range of methods for handling or
imputing the missing values in standard statistical analysis [49]. Specifically
for image analysis, there are synthesis methods that predict missing modalities.
Some methods model the physical properties of the imaging process, e.g., to
derive intrinsic tissue parameters from MRI scans [50] or to derive pseudo-CT
from MRI in radiotherapy applications [51, 52]. But an explicit model of the
imaging process is not even required, as image processing techniques can be
sufficient: for example, pseudo-CT images have also been made with tissue
segmentation [53, 54], with Gaussian mixture models [55] or by registering
and combining CT images [56, 57].

Interestingly, data synthesis can not only generate images but also helps
as an intermediate step. For example, Iglesias et al. [58] found that synthetic
data improved the registration of multi-sequence brain MRI. Roy et al. [59]
showed that synthetic sequences can improve segmentation consistency in
datasets with multiple MRI contrasts. Li et al. [60] predicted PET patches
from MRI data with convolutional neural networks, and found that including
this synthetic PET data could improve classification of Alzheimer’s disease.

There is something paradoxical about these results: if the synthetic data
is derived from the available data and does not add new information, how
can it still improve the performance? We discuss three possible explanations.
If the data synthesis is more flexible than the existing model, the synthetic
data could add a useful transformation that makes the data easier to analyze.
Data synthesis may also help to use the training data more efficiently, by
allowing samples with different missing modalities to be combined into a
single, large training set. Finally, synthesis methods that use unlabeled data,
such as those discussed here, are an elegant way to add unsupervised learning
to supervisedmodels. However, most studies with synthetic data do not feature
mixed training data or extra unlabeled examples, which suggests that the extra
modeling power of the synthesis method could be important.

We present experiments comparing simple and complex classifiers trained
with synthetic data on multi-sequence MRI data from the BRATS brain tumor
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segmentation challenge [1]. We use neural networks and restricted Boltzmann
machines (RBMs) to provide synthetic replacements for missing image se-
quences. These representation learning [3] methods aim to learn new, abstract
representations from the data. We use these representations to train linear
support vector machines (SVMs) and random forests. We compare the results
of using data synthesis with those of simply replacing missing data with a
constant value. The data synthesis models are non-linear, so we expect that
they can improve the results of the linear SVM but have a smaller effect for
the random forests.

3.2 Methods

Image Synthesis with Neural Networks. We use a neural network with three
layers: an input layer with nodes v i to represent the voxels from the 3D input
patches, a hidden layer with nodes h j , and a layer with nodes yk representing
the 3D patch to be predicted. In this feed-forward network the visible nodes v i
are connected with weights Wi j to the hidden nodes h j , which are connected
to the output nodes ŷk with weights U jk . The parameters b j and ck are biases.
The activation of the nodes given input v is given by

h j = sigm(∑
i
Wi jv i + b j) and ŷk =∑

j
U jkh j + ck , (3.1)

with sigm (x) = 1
1+exp(−x) . We use backpropagation to learn the weights that

optimize the reconstruction error between the predicted ŷ and true values y:

err (y, ŷ) =∑
k
∣yk − ŷk ∣ . (3.2)

Restricted Boltzmann Machines. A restricted Boltzmann machine (RBM)
models the joint probability over a set of visible nodes v and hidden nodes
h, with an undirected connection with weight Wi j between each visible node
v i and hidden node h j . Each visible node has a bias b i , each hidden node a
bias c j . We use noisy rectified linear units in the hidden layer and real-valued
nodes with a Gaussian distribution for the visible nodes [33]. The weights and
biases define the energy function

E (v, h) =∑
i

(v i − b i)2

2σ 2
i

−∑
i , j

v i
σi
Wi jh j −∑

j
c jh j , (3.3)
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where σi is the standard deviation of the Gaussian noise of visible node i. The
joint distribution of the input v and hidden representation h is defined as

P (v, h) = exp (−E (v, h))
Z

, (3.4)

where Z is a normalization constant. The conditional probabilities for the
hidden nodes given the visible nodes and vice versa are

P (h j ∣ v) = max(0,∑
i
Wi jv i + c j +N (0, sigm(∑

i
Wi jv i + c j))),

(3.5)

P (v i ∣h) = N (∑
j
Wi jh j + b i , σi), (3.6)

with sigm (x) = 1
1 + exp (−x)

. (3.7)

We use stochastic gradient descent with persistent contrastive divergence [33,
61] to find weightsW and biases b and c that give a high probability to samples
from the training distribution.

Although the energy E (v, h) can be calculated with Equation (3.3), the
normalization constant Z prohibits computing the probability P (v, h) for
non-trivial models. However, we can still sample from the distribution us-
ing Gibbs sampling and the conditional probabilities P (h j ∣ v) and P (v i ∣h)
(Equations (3.5) and (3.6)).

The standard RBM has one set of visible nodes. To model the patches for
multiple sequences we use a separate set of visible nodes vs for each sequence s,
connected to a shared set of hidden nodes h. There are no direct connections
between visible nodes, so the interactions between sequences are modeled
through the hidden nodes. We train this RBM on training samples with the
same patch in every sequence to learn the joint probability distribution of the
four sequences.

Image Synthesis with RBMs. In theory we could calculate the probability of
one sequence given the others, P (vs ∣ v / vs ), to predict a missing sequence,
but the normalization constant Z makes this impossible. We resort to Gibbs
sampling to synthesize the missing sequence. We initialize the model with
the available sequences and keep these values fixed. We set the visible nodes
for the missing sequence to 0, the mean value for our normalized patches.
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During Gibbs sampling we alternate sampling from the visible and hidden
layers. We use the final values of the visible nodes for the missing sequence as
the synthesized patch.

3.3 Data and Implementation

We used data of 30 patients from the BRATS 2013 brain tumor segmentation
challenge [1] with four MRI sequences per patient: T1, T1 post-contrast (T1+c),
T2 and FLAIR. The scans of each patient are rigidly registered to the T1+c scan,
which has the highest resolution, and resampled to 1 mm isotropic resolution.
The dataset includes brain masks and class labels for four tumor structures.

For each patient we extracted patches of 9 × 9 × 9 voxels from the same
location in each sequence. For feature learning we used 10 000 patches per
scan, centered at random voxels in the brain mask. For classification we used
the label data to create a balanced training set with approximately 1

5 th of the
samples for each class (four tissue classes and the non-tumor background).

We normalized the data twice. First, each scanwas normalized to zeromean
and unit variance to remove large differences between scans. After extracting
patches we calculated the mean intensity, standard deviation and the intensity
of the center voxel for each patch, since these features may help to discriminate
tissue classes. Finally, we normalized each patch before training the neural
networks and RBMs, since this helps to learn the local image structures.

We trained the neural network and RBM on unlabeled patches, imple-
mented with the Theano library [39] for Python. The neural networks had one
hidden layer of 600 binary nodes; the RBMs had 600 noisy rectified linear
units in the hidden layer. Using more nodes or layers did not improve the
performance. We used stochastic gradient descent with a decreasing learning
rate for both models, with persistent contrastive divergence to estimate the
updates of the RBM.

After training the models, we synthesized missing sequences from three
known sequences, using Equation (3.1) for the neural network and Gibbs
sampling (20 iterations) for the RBM. As a baseline method, we replaced
missing sequences with all zeros, the mean value of the normalized patches.

We trained random forest and linear SVM classifiers from Scikit-learn [40]
to classify the five tissue types. The feature vectors were composed of either the
normalized intensity values of observed and synthesized patches, or the values
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of the hidden layer of the RBM. We also included the intensity of the center
voxel and the mean intensity and standard deviation of the patch intensities.

We repeated our experiments for five train/validation/test splits, each with
20 training scans, 5 scans to validate the model parameters and 5 test scans.
For each split, we used the validation set to optimize the number of trees
(up to 200) in the random forest, the L2 regularization of the SVM, and the
hyperparameters of the neural networks and RBMs. We report the mean
accuracy on the test sets.

3.4 Experiments

We present two classification scenarios. In the first, all samples are missing the
same sequence. As a baseline we use the classification accuracy without data
synthesis, measured on the full dataset and on datasets where we removed one
sequence from the training and test data. Next, we look at data synthesis to
complete the missing sequences. We trained classifiers on complete samples
and tested on samples with one synthetic sequence. We also give the accu-
racy of classifiers trained on samples with a synthetic sequence, because the
synthetic data might have a different distribution than the real data. Training
and testing a classifier on data with different distributions might reduce its
performance. Finally, we trained classifiers on the hidden representation from
the RBM directly.

The second scenario uses a mixed training set, in which every sample
is still missing one sequence, but where every quarter of the training set is
missing a different sequence to simulate a combination of heterogeneous
datasets. Without data synthesis, a separate classifier is needed for each subset
of samples with the same three sequences. We use this as a baseline for the
synthesis experiments. The RBM can be trained on the mixed training set.
The neural networks have a practical problem: with no training samples with
four sequences, we cannot train a network that predicts one sequence from the
other three. Instead, we trained networks with one (MLP 1–1) or two (MLP
2–1) input sequences to predict one output sequence. Each option yields three
networks to predict one sequence for a sample with three available sequences;
we used the average prediction. We used the synthesis methods to complete
the training set and compare with replacing the missing values with zeros, the
mean value of the normalized patches.
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3.5 Results

Table 3.1 shows the results of removing one of the MRI sequences from the
test set. When training without synthesis, removing T1+c or FLAIR reduced
the accuracy more than removing T1 or T2, suggesting that T1+c and FLAIR
provide information that is not in T1 or T2. (The T1+c scans also had a higher
original resolution.)

Training and testing with one synthetic sequence gave an accuracy similar
to that of training on the dataset without the sequence. Replacing the synthetic
data with zeros also gave similar results. This fits with our hypothesis that the
synthetic data might not add new information. Adding synthetic data did not
make the results much worse, which is useful if the synthetic data is used to
combine data from multiple datasets. Using RBM synthesis was slightly better
than using a neural network or replacing the sequence with zeros. Training
on synthetic data instead of on real data slightly improved the accuracy, most
likely because classifiers were confused by the different distributions of the
real and synthetic data. Training on the hidden representation from the RBM
increased the accuracy of the linear SVM and brought it closer to that of
the random forest. This suggests that although the RBM does not add new
information, it can still transform the data in a way that helps the linear SVM.
The RBM representation did not improve the accuracy of the more complex
random forests.

Table 3.2 shows the results of trainingwith amixed training set with partially
incomplete data. Training on subsets of complete samples (sharing the same
three sequences, 1

4 th of the samples) gave a lower accuracy than training on
the full set. Using the synthesis methods to complete the samples, we trained
a classifier on all samples, which gave a higher accuracy than training on
subsets. There was little difference between the two neural network approaches
and replacing the missing values by zeros. The RBM synthesis gave a lower
accuracy, possibly because synthesizing themissing training sequences made it
harder to optimize the model. Training directly on the hidden representation
from the RBM gave the highest accuracy for the linear SVM, as in the first
experiment. The results with random forests were comparable to those of
training on synthesized data.
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3.6 Discussion and Conclusion

Data synthesis can improve the classification accuracy of multi-modal image
analysis by providing synthetic replacements for incomplete examples. We
first explored the explanation that the synthesis models may offer data transfor-
mations that are useful to the classifier. In our experiments in which the same
modality was missing for all samples, we found few significant improvements
from using synthetic T1, T1+c or T2. We suspect that these modalities are
too similar to produce useful transformations. Synthesized FLAIR did give a
small improvement. Moreover, training on the RBM hidden layer significantly
improved the accuracy for both classifiers and brought the SVMs close to the
random forests. This suggests that the RBM extracts features that are new to
the linear SVMs, but that could already be extracted by the random forests.

We found stronger improvements from using synthetic data in our second
experiment. The synthesis methods made it possible to combine samples with
different missing sequences in one training set. Using this larger training set
increased the accuracy of both linear SVMs and random forests. We found
similar results by replacing the missing values with zeros, the mean intensity
after normalization. This suggests that at least part of the improvement in
accuracy might be the result of having more training data.

In these applications the RBMs have a practical advantage over neural
networks, because RBMs learn a joint probability distribution that can be used
to predict any missing sequence. In contrast, neural networks are explicitly
trained to predict one sequence given the others, so they need a separate
network for each sequence. In our experiments the neural networks had a
slightly lower reconstruction error, because the RBMs optimize a different
learning objective.

Both neural networks and RBMs are trained with unlabeled data, a useful
property that makes it easier to train them on large datasets. This can be an
elegant way to use unlabeled data to improve a supervised classifier.

In conclusion: synthetic data might help classification because it allows
better use of available training data, and because it offers new transformations
of the data. This second contribution depends on the difference in complexity
of the synthesis model and the classifier. A simpler classifier is more likely to
benefit from the additional features that the synthesis model can extract from
the data, even though the synthetic data does not contain extra information.
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In contrast, more complex classifiers can extract more information from the
original data and are less likely to benefit from synthetic data. Whether it is
better to include the extra complexity in the classifier or in a synthesis model
is up for discussion.
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4
Learning cross-modality

representations from
multi-modal images

Machine learning algorithms can have difficulties adapting to data from different
sources, for example from different imaging modalities. We present and analyze
three techniques for unsupervised cross-modality feature learning, using a shared
autoencoder-like convolutional network that learns a common representation
from multi-modal data. We investigate a form of feature normalization, a learn-
ing objective that minimizes cross-modality differences, and modality dropout, in
which the network is trained with varying subsets of modalities. We measure the
same-modality and cross-modality classification accuracies and explore whether
the models learn modality-specific or shared features. This chapter presents ex-
periments on two public datasets, with knee images from two MRI modalities,
provided by the Osteoarthritis Initiative, and brain tumor segmentation on four
MRI modalities from the BRATS challenge. All three approaches improved the
cross-modality classification accuracy, with modality dropout and per-feature
normalization giving the largest improvement. We observed that the networks
tend to learn a combination of cross-modality and modality-specific features.
Overall, a combination of all three methods produced the most cross-modality
features and the highest cross-modality classification accuracy, while maintaining
most of the same-modality accuracy.
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4 . 1 . I N TRODUCT ION

4.1 Introduction

Many machine learning methods that work well on data that is similar to their
training data might fail on data with different characteristics. This can lead
to practical problems in medical image analysis, for example when existing
models need to be applied to scans acquired with different imaging protocols
or with different scanners. In these cases, transfer learning approaches can
help to improve results, by allowing data from different sources to be used to
train a single model that works for all sources. This chapter proposes one of
these approaches, based on representation learning using convolutional neural
networks (CNNs). We present and study several ways to encourage a CNN
to learn a common feature representation from heterogeneous data, in order
to obtain a source-independent representation that is similar for data from
all sources. This common representation makes it possible to train a model
on data from one source and apply it to data from another. We apply these
methods in cross-modality experiments.

Neural networks for cross-modality learning, such as the model presented
here, have been popular in computer vision for some years (starting with [62])
and havemore recently also been applied tomedical images (e.g., [63]). Similar
approaches to transfer knowledge between modalities have also been used
to learn from incomplete datasets with missing modalities (e.g., [64, 65]). In
contrast with previous work learning a joint representation using a single
transformation for all modalities (e.g., [66]), we propose cross-modality net-
works that learn a separate transformation for each modality. This allows the
networks to model more complex transformations between modalities, such
as intensity inversions, instead of merely learning modality-invariant features
that are expressed in the same way in all modalities.

Cross-modality classification is a relatively unexplored topic in medical
image analysis, but has received more attention in multimedia retrieval, most
often in works on cross-modality classification of images and text (e.g., [67–
72]). Feng et al. [70] present cross-modal retrieval experiments in cross-modal
feature learning, using autoencoders and restricted Boltzmann machines to
learn shared representations from images and text. They evaluate a learning
objective similar to the similarity term discussed in this chapter, as well as a
form of modality dropout. Srivastava and Salakhutdinov [71] use deep Boltz-
mann machines to learn joint representations for text and images, reporting

51



CHAPTER 4 . L EARN ING CROSS -MODAL I TY REPRESENTAT IONS FROM
MULT I -MODAL IMAGES

that multi-modal learning can improve results even if some modalities are
not available at test time. Ngiam et al. [62] present cross-modality classifica-
tion experiments with restricted Boltzmann machines and deep autoencoders,
showing that speech classification can be improved by learning from video
and audio. They train with a form of modality dropout to learn models that
are robust to inputs with missing modalities. Vukotić et al. [72] present cross-
modal deep networks based on deep autoencoders, aiming to learn a common
hidden representation from text and images in a video hyperlinking task. In
the medical domain, Moradi et al. [73] proposed a cross-modality neural net-
work combining text and images for semi-automatic annotation of medical
images, using a two-step approach that first extracts features from text and
images and then learns a mapping between the two domains. In this chapter,
we propose a single-step method to learn cross-domain representations from
multi-modal medical images, and evaluate a number of additions to obtain
representations that perform well in cross-modality classification.

Recent work using adversarial learning provides an alternative method for
unsupervised domain adaptation, using an adversarial loss function. This can
be done at the image level or at the feature representation level. Adversarial
domain adaptation on an image level can be implementedwith cycle-consistent
generative adversarial networks (CycleGANs). For example, Zhang et al. [74]
applied this to CT and MRI data, by training a CycleGAN to convert MRI
data to CT and back. In this case, the discriminator network attempts to
discriminate between CT derived from MRI data and real CT images. On
a feature level, the adversarial loss can be implemented by a discriminator
network that attempts to identify the source modality of a sample from its
feature representation. For example, Kamnitsas et al. [75] applied this to an
MRI and CT brain segmentation task, and describe how the adversarial loss
helps to produce a feature representation that is more similar across modalities.
Unlike the methods proposed in this chapter, the adversarial methods do not
use corresponding image samples from both domains, but rely solely on the
adversarial loss to learn the translation.

We present results of patch-wise cross-modality classification experiments
on two multi-modal datasets: a knee cartilage segmentation dataset with two
different MRI sequences, and a brain tumor segmentation dataset with four
MRI sequences. Voxel classification approaches such as the deep convolutional
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Figure 4.1: Schematic overview of the axial CNN for twomodalities. For eachmodality
m, the input xm is encoded into a representation f m(xm). The representa-
tions for all modalities are averaged into amean representation f (x), which
is then used to compute reconstructions gm( f (x)) for all modalities. Each
additional modality adds an extra input and output plane and is included
in the average for the central layer.

networks used in this chapter have been used previously for both types of
data. For example, knee cartilage segmentation has been approached with
texture features (e.g., [76]) and deep neural networks [77]. Texture-based voxel
classification also gave good results for the brain tumor segmentation problem
(see [1] for an overview). In recent years, deep convolutional networks have
also been applied to this problem (e.g., [78]).

For both datasets, we use unlabeled training data with multiple modalities
per subject to train an axial CNN [63] that learns source-specific transforma-
tions that map data from each source to a single common representation. We
evaluate this common representation in a transfer learning setting, training a
classifier on labeled data from one source and applying it to data from another.
We combine the basic cross-modality architecture with three techniques to
further improve cross-modality feature learning: modality dropout [62, 65],
a similarity term [63], and a normalization step. We analyze whether the
models learn mostly shared features, mostly modality-specific features, or a
combination of both.
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In this chapter, we use an axial neural network architecture that is similar
to the architecture that we used in our workshop paper [63], although we used
a much simpler non-convolutional network for those experiments. The idea
of using a separate network path for each input source also appears in work
by Ngiam et al. [62] and Havaei et al. [65] on modality dropout, although the
latter only applied it to the input side of a supervised classification network
and not to reconstruction. In this chapter we combine all three methods, and
provide an extensive evaluation and analysis of the feature representations
learned with the different combinations.

This chapter is organized as follows. Section 4.2 outlines the basicmodel and
the three techniques to improve cross-modality feature learning. Section 4.3
discusses the datasets. Section 4.4 gives an overview of the experiments, the
results of which are presented in Section 4.5. Finally, Section 4.6 and Section 4.7
discuss the conclusions.

4.2 Methods

We investigate the axial convolutional neural network [63] (Figure 4.1) for
cross-modality learning. This is an autoencoder-like model that learns a
common representation for data from multiple modalities, which can then be
used for cross-modality classification: training a classifier on data from one
modality and applying it to data from another, using the shared representation
as a common feature description for samples from both modalities. In this
section, we describe the model and three extensions that can further improve
the cross-modality similarity of the representations.

4.2.1 Axial convolutional neural network

We construct a multi-input autoencoder network (Figure 4.1) that has an
input x = {x1 , x2 , . . . , xM} with corresponding input patches xm for each
of the M modalities. For a modality m, given an input patch xm , the net-
work uses a modality-specific encoding transformation f m to compute the
representation f m (xm). Because the model should produce the same rep-
resentation for each of the modalities, we compute the mean representation
f (x) = 1

M ∑
M
m=1 f m (xm) and use this as the input for the modality-specific

decoding transformations gm ( f (x)).
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The network is trained with an auto-encoder objective to minimize the sum
of the reconstruction errors:

Lrecon =
M
∑
m=1
∣gm ( f (x)) − xm ∣ . (4.1)

The model is trained with paired input patches x = {x1 , x2 , . . . , xM}. We
assume that the images are registered and that there is a voxelwise correspon-
dence between all patches xm for a given sample. Furthermore, although the
network can handle incomplete training samples for which not all M modali-
ties are available, it needs sufficient training pairs to learn the correspondences
between all modalities.

We implement the encoding and decoding transformations as convolutional
networks (Figure 4.2) with a sequence of convolution and batch normalization
layers. The encoding part of the network uses strided, valid convolutions to
avoid border effects in the central layer. The decoding part is the inverse of
the encoding part, using transposed convolutions to reconstruct the original
input size. All inner layers use leaky rectified linear units; the reconstruction
layer is linear to allow it to reproduce the full range of input values.

Taking the mean representation over all modalities encodes our goal of
learning a common representation across modalities in the structure of the
network: ideally, we want the representation f m (xm) ≈ f (x) to be the same
for all modalitiesm. Using the average representation instead of a single shared
layer makes it possible to train and test with incomplete data for which not
all modalities are available: by dividing the sum by the correct number of
modalities, the scale of the combined feature values becomes independent of
the number of input modalities.

Averaging the representations over all modalities is not sufficient to learn
cross-modality representations, because it still allows the network to learn
modality-specific features. If the network is always trained with complete
training samples, for which all modalities are always available, it might allocate
a different part of the feature representation to each modality. This would
produce a single feature vector that can be used to reconstruct all modalities,
but it would not produce a true cross-modality representation, because it
is still dependent on all input modalities. To obtain a true cross-modality
representation, we need to change how the model is trained. The remainder
of this section presents three techniques to do this.
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stride [2 × 2 × 2]

BatchNorm + LReLU

Conv [3 × 3 × 3] × 32

BatchNorm + LReLU

Conv [2 × 2 × 2] × 32
stride [2 × 2 × 2]
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Dense layer to 128
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Output: 15 × 15 × 15
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Figure 4.2: The structure used for the encoding and decoding parts of the network,
with the size of intermediate representations shown between the blocks.

4.2.2 Modality dropout

The first approach (used, for example, in [62] and [65]) modifies the training
procedure. In the default training procedure, the network is never explic-
itly forced to learn to reconstruct one modality from another, because all
modalities are always available for all training samples. If the representation
is sufficiently large, the network might learn to use a separate part of the rep-
resentation for each modality. Modality dropout prevents this by disabling
modalities at random during training, computing the mean representation
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from a random subset of modalities while still optimizing the reconstructions
for all modalities. For a model with M modalities, we select a random subset
of 1 to M input modalities in each update step. We generate a random subset
each time a sample is included in a minibatch: the modalities can be different
each time a sample is used, and each minibatch can contain multiple modality
combinations (see Figure 4.3). Using incomplete inputs for trainingmeans that
the network can no longer rely on the original modality for its reconstruction,
but is forced to learn cross-modality reconstructions and representations.

4.2.3 Similarity term in the learning objective

The second approach explicitly adds cross-modality learning to the learning
objective, similar to the approach in [63]. We compute the difference between
the modality-specific representations f m (xm) and the mean representation
f (x). We add this to the original learning objective (Equation (4.1)) with a
tunable weight α ∈ [0, 1]:

Lsim =
M
∑
m=1
∣ f m (xm) − f (x)∣ , (4.2)

Lcombined = (1 − α)Lrecon + αLsim. (4.3)

Choosing α large enough will cause the network to reduce the differences
between the representations for eachmodality. However, it is equally important
not to set α too high: choosing a value very close to 1 will disregard the
reconstruction error and can produce representations that may be very similar,
but are also very uninformative.

The similarity term as defined in Equation (4.2) can have another undesired
effect: it can be trivally minimized by reducing the absolute feature values, so
it might lead to very small or completely disabled feature values. This reduces
the loss but does nothing to improve the cross-modality similarity. To prevent
this trivial optimization, we normalize all feature vectors to zero mean and
unit standard deviation.

4.2.4 Per-feature normalization

Global normalization across all features still allows cross-modality differences
between individual features: they can be active for one modality and disabled
in another. Our third approach therefore normalizes each individual feature to
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Minibatch i, sample 1
Complete input

After modality dropout

Axial CNN

Minibatch i, sample 2
Complete input

After modality dropout

Axial CNN

Minibatch i, sample 3
Complete input

After modality dropout

Axial CNN

Minibatch i, sample 4
Complete input

After modality dropout

Axial CNN

Figure 4.3: Schematic illustration of modality dropout with four modalities. We select
a random subset of 1 to 4modalities for each sample in eachminibatch. The
network is only given the selected input modalities to compute the central
representation, but we ask it to reconstruct all modalities and optimize the
full reconstruction error. The subsets are generated independently for each
sample, so a minibatch can contain multiple modality combinations. We
generate a new random subset each time a sample is used for training.

zero mean and unit standard deviation, before averaging the modality-specific
representations to get the mean representation. This per-feature normalization
helps to remove a large part of the differences between modalities, and allows
the network to focus on more meaningful ways to improve the representation
similarity. We implement this normalization using a standard batch normal-
ization procedure [79] to learn estimates of standard deviation and mean for
each feature, per-modality, and to normalize the feature to zero-mean and
unit standard deviation. The batch normalization formula provides scaling
and shift parameters (β and γ in [79]), which allow the model to scale and
shift the features away from a zero mean and unit standard deviation. In our
case, doing so could reintroduce differences between modalities. We fix the
parameters to β = 1 and γ = 0 to prevent this. (Note that we only make this
change for this specific per-feature normalization step. We use the standard
batch normalization formula for the batch normalization layers in the network,
as shown in Figure 4.1.)
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4.3 Data

We performed experiments for two tasks: knee cartilage segmentation and
brain tumor segmentation. In both cases, we evaluate our methods on a patch-
based classification task in which we train classifiers to label the center voxel of
a 15 × 15 × 15 voxel neighborhood. We take paired patches from all modalities
of a subject, such that the patch in each modality represents the same physical
location.

For the experiments on knee segmentation, we used knee MRI images
from the Osteoarthritis Initiative (OAI) [2], with the manual cartilage and
meniscus segmentations from the iMorphics subset. For each subject, the
dataset provides normal (N) and fat-suppressed (FS) MRI scans (Figure 4.4a),
made shortly after each other, which disagree on the intensity of some tissue
types. The normal scans also have a somewhat better resolution. The dataset
provides registered and resampled scans for each subject, to a common voxel
spacing of 0.36 × 0.36 × 0.7 mm. We extracted paired patches of 15 × 15 × 15
voxels, using the annotation of the center voxel in the normal scan as the patch
label to define a three-class classification problem (cartilage, meniscus and
background). The background voxels were sampled from a background mask,
which we constructed by dilating the cartilage and meniscus segmentations
with 10 voxels. We used N–FS pairs from baseline and 12-month follow-up
sessions from 88 subjects, excluding two pairs that were not properly aligned.
For each of the 172 pairs we extracted a randomly sampled, balanced set of 5000
cartilage, 5000 meniscus and 5000 background patches. Before extracting
the patches, we normalized each scan to have a zero mean and unit standard
deviation in the background and foreground voxels.

Our second dataset uses data from the BRATS brain tumor segmentation
challenge [1], which provides T1, contrast-enhanced T1 (T1+c), T2 and FLAIR
scans for each subject (Figure 4.4b). The challenge dataset (BRATS 2015)
provides manual segmentations of four tumor components and a brain mask
for each subject. The images and segmentations for each subject have been
registered to the contrast-enhanced T1 scan and resampled to a 1 × 1 × 1 mm
voxel size. For each subject, we extract patches of 15× 15× 15 voxels at the same
position in each modality, and use the label of the center voxel as the label of
this sample. Because some of the tumor components are only visible on some
of themodalities and we evaluate single-modality cross-modality classification,
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we merged the four tumor components into a single class to formulate a two-
class classification problem (tumor vs. non-tumor brain tissue). The dataset
contains scans of 220 subjects, for each of which we extracted a balanced set of
5000 foreground and 5000 background patches. Before extracting the patches,
we normalized each scan to have a zero mean and unit standard deviation for
the voxels inside the brain mask.

4.4 Experiments

We present a comparison of all combinations of the three techniques: modality
dropout, per-feature normalization and a range of weights α for the similarity
term. For each combination, we trained axial neural networks to learn a
common feature representation. We then used the resulting networks to
compute a feature vector for each modality.

To evaluate the suitability of the common representation for classification,
we trained random forest classifiers on the features extracted by each axial neu-
ral network. We distinguish two scenarios: same-modality and cross-modality
classification. For same-modality classification, we trained the classifier on
the features obtained from one modality and evaluate it on a feature vector
obtained from the samemodality. For cross-modality classification, we trained
the classifier using the features derived from a different modality from the one
used in testing.

As part of our analysis, we investigate to what extent the models learn
modality-specific or shared features. We do this by training classifiers with
only a subset of features, ranked by the normalized cross-modality correlation
(following the suggestion in [80]). We start with the feature that has the
most similar values across modalities and gradually add more, training a new
random forest for each subset.

Our networkswere implemented usingKeras [81] andTheano [82]. We used
stochastic gradient descent for 100 epochs on the OAI dataset and 50 epochs
on the BRATS dataset, which was sufficient for the networks to converge to
a stable state. The minibatch size was 64 patches, the learning rate was 0.3
and the learning rate decay was 0.000002. We used Scikit-learn [40] with the
default settings to train random forest classifiers with 30 trees.

We compare the results of our axial CNNs with those of two baseline
methods. Both baselines use the same layer architecture as our axial networks
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Normal

Fat-suppressed

(a)OAI

T1 Contrast-enhanced T1 (T1+c)

T2 FLAIR

(b) BRATS

Figure 4.4: Example scans from OAI and BRATS, showing the two knee MRI modali-
ties and four brain MRI modalities.

(Figure 4.2), but instead of learningmultiplemodality-specific transformations,
the baseline methods learn only a single transformation that is shared by all
modalities. In this way, they resemble normal autoencoders that encode and
decode a single input patch and optimize its reconstruction error.

The two baselines use different training data to learn a common representa-
tion. The first baseline method is trained to reconstruct the training modality
from itself, which produces a transformation that we also apply to the testing
modality. For example, in a cross-modality classification experiment with
modalities A and B, the first baseline method learns its representation only
from patches of modality A, but the same representation is used to compute
the features for the patches from modality B at test time. The second baseline
learns the transformation from all modalities combined. In the example with
A and B, this baseline would learn its representation from a mixture of patches
from A and patches from B, without knowing which modality is represented
in each patch.
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We report results obtained in five-fold cross-validation. For each dataset,
we divided the paired scans in five random subsets of approximately equal size,
making sure that all scans of a subject were kept in the same subset. Using
each subset in turn for testing, we first trained the axial neural networks on
the remaining four subsets and used these networks to compute features for
the training and test samples. For each subset, we trained the random forest
classifiers on data from the training set and evaluate it on the test set. We
report the mean accuracy over all five folds.

We used a slightly modified procedure for the experiments with subsets
of most-correlated features, since these cross-modality correlations need to
be computed on data that was not used to learn the representation. For these
experiments, we introduced a second, two-fold cross-validation step to com-
pute the results: we split each test subset in two halves, ensuring that all data
from the same subject is in the same half, and in turn use one half to select
the features and the other half to evaluate the classifier. We report the mean
results over all 5 × 2 subsets, covering all samples in the dataset. If all features
are selected, this is equivalent to the normal five-fold cross-validation.

4.5 Results

Section 4.5.1 presents the same-modality and cross-modality classification
accuracy for the various models. This provides a overview of the performance
of the proposed methods and that of the baseline methods. We present the
results for both datasets, averaged over all five cross-validation folds.

Section 4.5.2 looks at the feature representations learned by each model,
showing the standard deviation, cross-modality correlation, and mutual in-
formation scores of the individual features. This provides an insight into how
modality dropout, per-feature normalization and the similarity term affect the
feature learning process. Since each network is initialized randomly, it is not
possible to average the measurements for individual features over multiple
cross-validation folds. We show the plots for one fold on the OAI dataset, but
found similar results for the other OAI folds and on the BRATS dataset.

Finally, Section 4.5.3 tries to identify whether models learn mostly shared or
mostlymodality-specific features,We show the classification accuracy obtained
using subsets of features with the highest cross-modality correlation. This
section shows the results for the OAI dataset, averaged over all five folds.

62



4 . 5 . R E SULTS

4.5.1 Same-modality and cross-modality classification accuracy

Table 4.1 shows the classification accuracy for each combination of methods,
measured on both datasets, as well as the performance of the baseline methods
on the same data. The table shows the average results over all modality pairs:
the exact performance depends on which modalities are combined, because
some modalities have more in common than others. However, the general
pattern and the ordering of the methods were similar for all modality pairs.

The results show that the axial neural network with the additions discussed
in this chapter can provide much better cross-modality results than the base-
line methods that do not take cross-modality differences into account. On
both datasets, the baseline methods achieve a much lower accuracy in cross-
modality classification than in same-modality classification. The axial neural
network also shows a drop in performance going from same-modality to cross-
modality classification, but this drop is much smaller. On the knee dataset, the
best-performing axial neural network obtains a cross-modality accuracy that
is very close to its same-modality accuracy. On the brain tumor dataset, the
performance drop is larger, but the axial neural network still performs much
better on cross-modality classification than the baseline methods.

Table 4.1 shows the results for axial networks with all combinations of the
three techniques. The best cross-modality accuracy was obtained with a combi-
nation of modality dropout, per-feature normalization and the similarity term.
Removing the similarity term from this combination of methods decreased
the cross-modality performance only a little, suggesting that modality dropout
and per-feature normalization are the most important.

Comparing individual techniques over all different combinations, both
modality dropout and per-feature normalization consistently provide an im-
provement of the classification accuracy. The contribution of the similarity
term is less clear: it can give an important improvement if either modality
dropout or per-feature normalization is missing, but if both are present the
additional improvement of the similarity term is small. However, while the
improvement from adding the similarity term might be large or small, it is
usually positive: adding the similarity term with an appropriate weight never
lead to a large decrease in same-modality or cross-modality performance.

To illustrate the reconstruction part of the network, Figure 4.5 shows some
of the reconstructions produced by the best-performing network for the OAI
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Input patch, normal (N) and fat-suppressed (FS) modalities

N

FS

Reconstructed from both modalities

N

FS

Reconstructed from normal (N) input

N

FS

Reconstructed from fat-suppressed (FS) input

N

FS

Figure 4.5: Original input and reconstructions for 15 patches from the OAI dataset,
showing the center slice from each 3D patch. The reconstructions are
generated by an axial neural network trained with modality dropout, per-
feature normalization and a weight α = 0.1 for the similarity term. The first
reconstruction is generated from the central representation computed from
both input modalities. The second and third reconstructions are computed
using the central representation from one modality only.

dataset. These reconstructions are not used for classification, which is based
only on the central feature representation, but it is still useful to see that the
network is able to reconstruct the main structures in the image and can also
reproduce some of the inter-modality differences.

4.5.2 Feature characteristics

The second part of our investigation considers the information content of
individual features. For each feature in each modality, Figure 4.6 shows the
mutual information score between the feature value and the class label, the
standard deviation, and the normalized cross-modality correlation for each
feature. The features are sorted by mutual information in the first modality:
from the most informative feature (left) to the least informative (right).
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We interpret these plots by comparing the values of each feature in the
two modalities: a cross-modality feature will have a similar meaning in both
modalities, and will show similar values in these plots. Conversely, if the plots
show a large difference between the values for both modalities, the feature is
unlikely to be useful for cross-modality classification.

The most basic model, without modality dropout, per-feature normaliza-
tion or similarity term, produces features that have very different standard
deviations and mutual information scores in each modality (Figure 4.6a). This
suggests that this basic model learns some modality-specific features that are
informative for one modality, but not for the other.

The complete model with modality dropout, per-feature normalization and
the similarity term learns features that are much more similar across domains.
The plots for the combination of all methods (Figure 4.6d) show very similar
values for the features in both modalities. This suggests that this model learns
many cross-modality features, which is consistent with the good performance
of this model observed in Section 4.5.1.

The plots of the standard deviations in Figure 4.6 also provide more insight
into the interaction between the similarity term and per-feature normalization.
Because the similarity term attempts to reduce the difference between feature
values for different modalities, it encourages the model to reduce the absolute
feature values. This is visible in the plots of the standard deviation, which show
that the similarity term reduces the standard deviation of the features. This
reduction does not necessarily improve cross-modality correlation, but it does
decrease the similarity term of the learning objective. Applying per-feature
normalization prevents this problem: the improved normalization brought
the standard deviation reasonably close to 1 for all features.

4.5.3 Classification accuracy for feature subsets

In the final part of our investigation, we look at the classification accuracy
obtained using subsets of features, sorted by decreasing normalized cross-
modality correlation. Figure 4.7 shows the cross-modality correlation of indi-
vidual features, sorted in decreasing order, for the various models. Figure 4.8
shows the classification accuracy obtained using subsets of features with the
highest cross-modality correlation. We show the results for the knee dataset
only, but the results for the brain tumor dataset show similar patterns.
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Figure 4.7 shows how the three techniques affect the cross-correlation of the
features. For the basic model without modality dropout, without per-feature
normalization and with a zero weight for the similarity term (Figure 4.7a), the
feature representation contains a combination of features with a reasonably
high cross-modality correlation (0.9), as well as features that are less corre-
lated across modalities (0.6). The optimal model combines modality dropout,
per-feature normalization and a non-zero weight for the similarity term (Fig-
ure 4.7d), producing a feature representation in which all features have a high
cross-modality correlation (values close to 1 for all features). The results for
other models in Figure 4.7 show that all three techniques individually can
improve the cross-modality correlation of the feature representation.

Figure 4.8 shows the same-modality and cross-modality classification accu-
racy for subsets of features with the highest cross-modality correlation: from
only the most correlated feature on the left, to all features on the right. For
same-modality classification (Figure 4.8a–d, left column), the accuracy for
most methods increases monotonically with the number of features. Adding
more features improves the results, although the improvement becomes fairly
small after a sufficient number of features have been added.

For cross-modality classification (Figure 4.8a–d, right column), the accu-
racy does not increase monotonically, but first increases and then decreases
again as features with a lower correlation are added. The low cross-modality
correlation indicates that these features have a differentmeaning in eachmodal-
ity, which will confuse a cross-modality classifier. However, the proposed tech-
niques can alleviate this problem. For the combination of modality dropout
and per-feature normalization (Figure 4.8d), the cross-modality classification
accuracy increases monotonically with the number of features. Including the
similarity term leads to an earlier peak in the classification accuracy. This
is consistent with the high cross-modality correlations of all features (Fig-
ure 4.7d), which indicates that this combination of methods learns mostly
cross-modality features. For the other models, there is a larger range of cross-
modality correlations (e.g., Figure 4.7a), which together with the decrease in
accuracy suggests that these models learn a mixture of modality-specific and
shared features.
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(d)Modality dropout and per-feature normal-
ization.

Weight of similarity term: α = 0.0 α = 0.1 α = 0.2 α = 0.5

Figure 4.7: Normalized cross-correlation (NCC) of features on the OAI knee dataset,
sorted from high to low correlation and averaged over five folds. The corre-
lation is computed between corresponding features from both modalities.
Combining modality dropout and per-feature normalization produced the
most similar features.

4.6 Discussion

We evaluated three strategies to improve cross-modality feature learning in
an axial neural network: modality dropout, per-feature normalization, and a
similarity term. The best results were obtained using a combination of all three
methods (Table 4.1). For both of our datasets, the features learned using this
combination of techniques resulted in the best cross-modality classification ac-
curacy, without affecting the same-modality classification accuracy too much.
The cross-modality classification accuracy obtained using this combination of
methods was higher than that obtained with the baseline method, a similar
feature-learning model that used the same transformation for all modalities.
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4.6.1 Comparing the three techniques

Modality dropout improved the accuracy of the axial neural network in both
same-modality and cross-modality classification experiments (Table 4.1), per-
haps because it explicitly trains the model to work well in both scenarios.
Modality dropout forces the model to reconstruct the target modality from
itself, which is useful for same-modality classification. It also forces the model
to reconstruct the target modality from another modality, which helps the
cross-modality case because it forces the network to learn representations that
encode sufficient cross-modality information and prevents it from depending
too much on one modality.

The second important factor was per-feature normalization (Table 4.1).
Forcing the features to have a similar mean and standard deviation in all
modalities turns out to be an effective way of minimizing cross-modality
representation differences (Figure 4.6). It prevents the network from learning
features that are used for one modality but not for another, and it simplifies the
optimization by removing part of the cross-modality differences. The features
learned with per-feature normalization also had higher mutual information
scores, suggesting that they contained more discriminative information.

Adding a similarity term in the objective function had a positive influence
on the cross-modality classification accuracy, but the strength of this influence
depended on whether it was combined with the other techniques (Table 4.1).
For the combination of modality dropout and per-feature normalization, the
additional effect of the similarity term was fairly small: the results of this
combination were only slightly better if the similarity term was included. This
was different for all other combinations: there, increasing the weight of the
similarity term produced more similar features and a better cross-modality
classification accuracy. This suggests that the combination ofmodality dropout
and per-feature normalization is powerful enough to remove most of the need
for the extra similarity term, but that the term can still have a positive effect in
other cases. It is important, however, to limit the weight of the similarity term:
setting it too close to 1 can cause the model to learn trivial, non-informative
and non-discriminative features [63].

Because the similarity term tries to minimize the absolute difference be-
tween feature representations, it also tends to reduce the absolute feature values.
This is visible in Figure 4.6: the features learned with the similarity term have
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lower standard deviations than the features learned without the term. Per-
feature normalization counters this side-effect and stabilizes the feature values,
improving the accuracy in the process.

While the three methods greatly improved the cross-modality performance,
they also maintained most of the original same-modality performance (Ta-
ble 4.1). This is a useful property if the same representation is used for both
same-modality and cross-modality classification.

4.6.2 Modality-specific vs. shared features

One of the hypotheses behind our experiments was that the models might
learn a combination of modality-specific and shared features. Shared features
are good for cross-modality classification, but the models might still learn
modality-specific features to preserve crucial modality-specific information.
To investigate this further, we tried to separate shared and modality-specific
features by sorting the features based on the cross-modality correlation (Fig-
ure 4.7) and training on subsets of highly correlated features. Our approach
produced different results for each of the methods (Figure 4.8). For the best
combination of modality dropout, per-feature normalization and the similar-
ity term, we found that almost all features had a very strong cross-modality
correlation, and that the classification performance improved monotonically
with the number of features. This suggests that this combination of methods
learned mostly cross-modality features. The other methods produced both
highly correlated features and features that had a lower cross-modality corre-
lation. In these cases, although the same-modality accuracy increased as we
added more features, we obtained the best cross-modality accuracy by train-
ing on a smaller subset of highly correlated features. This suggests that these
representations contained not only shared but also modality-specific features,
which help same-modality classification but can harm the cross-modality case.

Although shared representations may be best for cross-modality classifi-
cation, preserving modality-specific information is important for the same-
modality performance. This is somewhat reflected by the results of our baseline
methods (Table 4.1), which show that features learned for one specific modality
give a slightly better same-modality accuracy. In applications where the same-
modality performance is as important as the cross-modality performance, it
may be useful to give the model a way to preserve modality-specific features
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without including them in the shared representation. One way to do this could
be to reserve a separate, modality-specific part of the representation that is
only used for a single modality.

4.6.3 Data requirements

The approach discussed in this chapter makes some assumptions about the
data and the problem to which the methods are applied. Firstly, the approach
assumes that data is available for all modalities and that at least some of this
(unlabeled) data is registered with a voxelwise correspondence. The axial
neural network learns its feature representation from corresponding patches,
which represent the same physical area in each modality. For models with
more than two modalities, it is not strictly necessary to have all modalities
available for all subjects: as the modality dropout method shows, it is possible
to train with patches for which only a subset of modalities is available.

Secondly, learning a shared representation for multiple modalities assumes
that the modalities have something in common. Because our model learns
a separate transformation for each modality, it can handle large differences
between modalities. However, the shared representation can only preserve and
transfer information that is available in all modalities: if a modality provides in-
formation that is not visible in the othermodalities, this information can not be
used in cross-modality classification. The performance of the proposed meth-
ods depends therefore on the type of problem and on the differences between
the modalities. If the modalities are very different and the modality-specific
information has important discriminative value, removing it from the shared
representation may reduce the same-modality classification performance.

In our experiments, the modalities in the knee dataset have more in com-
mon than the modalities in the brain tumor dataset. The knee images have a
different resolution and have different intensities for some of the structures,
but the image structures that are important for classification are recognizable
in both images. As a result, the cross-modality classification performance on
this dataset comes fairly close to that in the same-modality case. This sug-
gests that transfer learning could be successful in this scenario. In the brain
tumor dataset, the four modalities have larger differences, and some tumor
structures are clearly visible in some images but not in others (Figure 4.4b).
In our cross-modality classification experiments, this meant that the cross-
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modality classification accuracy was noticeably lower than the same-modality
accuracy. The performance differed per modality: in our classification task, T2
and FLAIR gave much better results than T1 and contrast-enhanced T1. This
preference for T2 and FLAIR is most likely an artifact of how we grouped the
tumor components into a single class, and would be different when classifying
other components (for example, contrast-enhanced T1 would be important for
identifying the necrotic core, which we grouped with the other tumor compo-
nents in our experiments). While our experiments clearly show the potential
of our method as a transfer learning method, accurate tumor classification
in this dataset will require the use of multiple modalities. However, it might
be possible to use transfer learning between pairs of modalities that together
contain sufficient information (e.g., T1/T2 and T1+c/FLAIR).

4.6.4 Remaining thoughts

In this chapter, we used autoencoder-like models to learn features without dis-
criminative training. The advantage of this approach is that the representation
learning does not require labels, only paired scans. Labels are required for
training the classifier, but they can also come from unpaired scans from only
one of the modalities. A disadvantage of this unlabeled feature learning is that
the representations may contain some features that have no discriminative
value, but are needed to compute the reconstruction. An alternative network
that combines feature learning and classification might be able to obtain a
better performance by focusing only on discriminative features. Although this
is outside the scope of this chapter, the approaches discussed here could also
be applied to such classification networks.

The axial neural network discussed in this chapter learns a separate transfor-
mation for eachmodality, as opposed tomodels that use a single tranformation
for all modalities (such as our baseline methods). Single-transformation mod-
els essentially learn to extract modality-invariant features with transformations
that are insensitive to the source modality, which limits them to features that
can be extracted in the same way from all modalities. In contrast, multi-
transformation models such as ours learn a shared feature representation by
learning modality-specific transformations. This is a more flexible approach
that can, in theory at least, extract any information that is common to all
modalities, even if it is represented differently in each modality.
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Since this chapter is focused on analyzing cross-modality classification,
and not on finding the best knee cartilage or brain tumor segmentation seg-
mentation method per se, it is difficult to compare our results with those of
state-of-the-art approaches. Many knee cartilage segmentation methods use
shape-based post-processing methods [83]. Brain tumor segmentation meth-
ods, such as those for the BRATS challenge [1], generally use multi-modal
information to get good classification results. The results of these more spe-
cialized methods are better than those presented in this chapter.

4.7 Conclusion

Differences in appearance make it difficult to apply a classifier trained on
data from one source to data from another. The proposed representation
learning method attacks this problem by transforming data from different
sources to a shared feature representation. We found that this yields both
modality-specific and cross-modality features. The basic axial neural network
architecture can be extended with three methods that further improve cross-
modality performance. Modality dropout trains the network by randomly
removing some modalities during training, which forces the model to learn
cross-modality reconstructions. Per-feature normalization improves cross-
modality similarity by normalizing all features to zero mean and unit standard
deviation. A similarity term explicitly adds cross-modality similarity to the
learning objective of the network. Based on our experiments on two different
datasets, we found that modality dropout and per-feature normalization are
crucial to maximize the number of cross-modality features and obtain the best
cross-modality classification results. The similarity term has a strong influence
in models without either modality dropout or per-feature normalization, but
has only a minor positive contribution if both other techniques are used.
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5
Unpaired, unsupervised domain

adaptation assumes your domains
are already similar

Unsupervised domain adaptation is a popular method in medical image anal-
ysis, but it can be tricky to make it work: without labels to link the domains,
domains must be matched using feature distributions. If there is no additional
information, this often leaves a choice between multiple possibilities to map the
data, which may be equally likely but not equally correct. In this chapter, we
explore the fundamental problems that may arise in unsupervised domain adap-
tation, and discuss conditions that might still make it work. We demonstrate
these conditions in experiments with synthetic data, MNIST digits, and medical
images. We observe that practical success of unsupervised domain adaptation
relies on existing similarities in the data, and is anything but guaranteed in the
general case.
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assumes your domains are already similar,” Submitted.
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5.1 Introduction

Modern deep learning methods for medical image analysis achieve impressive
results, but the models they produce often generalize poorly to data from
different scanners or different medical centers. This is especially inconvenient
in medical imaging because it can be time-consuming and expensive to obtain
the ground-truth annotations for a new training set. Domain adaptation
methods address this problem by adapting models trained on data from one
domain, the source, to data from another, the target. If the domain adaptation
step works well, models trained for existing datasets can be applied to data
from new domains with only a limited performance loss. Similarly, domain
adaptation can be used to combine data frommultiple sources in a singlemodel,
either by modelling the differences between domains or by reducing them.

5.1.1 Unsupervised domain adaptation

Domain adaptation comes in many shapes and forms (see Guan et al. [84]
for a recent overview of applications in medical imaging). In this chapter we
study unsupervised domain adaptation, which assumes that labelled data is
only available for the source domain. Some methods for unsupervised domain
adaptation learn the translation between domains from paired data, such as
scans of the same patient in different scanners. Here, we investigate a more
challenging setting: unsupervised domain adaptation without paired samples.

Without information on individual sample pairs, the mapping between
domains must be learned on a distribution level. To do this, a common as-
sumption is that although the data from the source and target domains looks
different, the underlying structure and tissue types are quite similar. For exam-
ple, a brain scan might look different in different scanners, but the anatomical
information is the same. This correspondence can be exploited to learn a
mapping between domains: if the domains have similar underlying structure
and tissue types, we should expect the features and outputs to have a similar
distribution as well.

5.1.2 Image-to-image translation

Many unsupervised domain adaptation methods are based on image-to-image
translation: by translating images from the target domain to the source do-
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main, they can be analyzed using the existing classifiers trained on source
data. For example, the popular CycleGAN model [85] is optimized using a
cycle-consistency loss, which minimizes the reconstruction loss of a source–
target–source translation, and an adversarial loss that discriminates between
real and translated target images.

Image-to-image translation is complex and relatively inefficient. The trans-
lationmodel must translate all information in the images, but only some of that
is useful to the subsequent classification or segmentationmodel. Moreover, the
focus on reconstruction loss may remove useful information that is difficult to
translate between images. In many cases, finding a perfect translation might
be impossible. For example, a translation between MRI and CT may only
preserve information that is captured by both modalities.

5.1.3 Learning domain-invariant representations

An alternative to image-to-image translation is domain adaptation in feature
space by learning domain-invariant representations. After mapping domain-
specific inputs to a common, domain-invariant feature representation, the
same classifier or segmentation model can be used for all domains. If the
datasets contains paired samples, the domain-specificmappings can be learned
with a loss that compares the representation of the same sample across domains.
Without paired samples, the mappings can be learned by aligning the feature
distributions for both domains. There are many ways to do this, such as
by optimizing a distribution similarity metric such as the Maximum Mean
Discrepancy loss (MMD, [86]), or by training a variational autoencoder [87].

In this chapter, we use the popular approach of domain adversarial learning
[88]. Thismethod relies on a domain discriminator that is trained to predict the
domain of a sample given its feature representation. By using this discriminator
in an adversarial learning objective for the feature encodingmodel, the encoder
is encouraged to learn domain-invariant representations. Tzeng et al. [89]
describe a general framework for adversarial discriminative domain adaptation
(ADDA) that covers many variants of this approach. Kamnitsas et al. [75]
present an early application of domain adversarial learning in a paper on brain
lesion segmentation.

We investigate the application of representation learning to unsupervised
domain adaptation with unpaired samples, where we assume that labels are
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only available for the source domain and there is no direct link between samples
in the source and target domains. We use domain adversarial learning to
implement our domain adaptation objective, but we believe that many of our
conclusions also hold for other methods.

5.1.4 Why does this even work?

Domain adversarial learning is a popular method in medical image analysis
[84], often with good results, but there has been relatively little research into
why it works. At first glance, domain adversarial learning makes very few
assumptions about the data, and should be able to align any pair of domains
just by matching their feature distributions. In practice, we argue in this
chapter, aligning distributions is not sufficient: there is usually more than one
way to match the domains, which means that additional assumptions about
the data are needed to find the correct solution.

In early work on this topic, Ben-David et al. [90, 91] explored the theoretical
bounds of the error of a domain adaptation model [90] and discussed the
assumptions for a successful domain adaptation result [91]. Most importantly,
they suggest that the unlabeled source and target distributions should be
similar. More recently, Zhao et al. [92] provided a theoretical analysis of
domain adaptation by learning invariant representations, i.e., intermediate
features which have a similar distribution in the source and target domains.
Zhao et al. show that in general, learning an invariant representation and
achieving a small error on the source domain is not sufficient to guarantee
a small error on the target domain, because the labelling function may be
different for both domains.

In this chapter, we explore these themes from amedical imaging perspective.
We hypothesize that a successful domain adaptation using adversarial learning
requires explicit or implicit assumptions about the data, or more specifically:
assumptions about the similarities between domains. We explore what these
assumptions can be, and show why they help to obtain useful domain adapta-
tion results. We investigate a number of data and model characteristics that
often appear in medical imaging and that might explain why medical domain
adversarial learning is successful. We explore these properties in several prac-
tical experiments, comparing results for datasets with different properties and
different network architectures.
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5.1.5 Outline

Section 5.2 presents an overview of related work in adversarial domain adap-
tation for medical images. Section 5.3 describes the unsupervised domain
adaptation approach. Section 5.4 discusses the problems with this approach,
and why it should not work in theory. Section 5.5 explains why it sometimes
does work in practice. Section 5.6 introduces the metrics used to evaluate
the results. Section 5.7.1 describes the technical implementation of the experi-
ments. Section 5.7.2 shows the experiments on a synthetic dataset, followed by
Section 5.7.3 on MNIST digits and Section 5.7.4 on brain tumor classification.
Section 5.8 and Section 5.9 provide a discussion and conclusion.

5.2 Related work

We summarize the main trends on adversarial domain adaptation in a medical
context. We discuss two approaches: image-level domain adaptation, which
translates images between domains, and feature-level domain adaptation, the
approach used in this chapter, which learns domain-invariant feature repre-
sentations. Guan et al. [84] provide a recent survey of domain adaptation in
medical imaging, covering adversarial learning and other methods.

5.2.1 Image-level domain adaptation with a cycle-consistency loss

Many adversarial domain adaptation works use image-to-image translation
with a cycle-consistency loss, based on the CycleGAN model [85]. Cohen
et al. [93] point out that this type of image-to-image translation may not be
ideal. They argue that distribution matching is sensitive to differences in the
sample distribution between the source and target domains, which can lead to
unrealistic and incorrect translations. They illustrate this with a CycleGAN
model that adds spurious tumor patterns when translating between brain MRI
protocols. The CyCADA model [94] adds a semantic consistency loss that
aligns the translated image on a feature level or on a task-specific level, such
as the output of a classification model.

In medical imaging, the CycleGAN approach has been used for MRI-to-CT
image synthesis [95–97], multi-contrast MRI [98], fundus imaging [99], chest
X-ray [100], histopathology [101], and ultrasound [97] images. The basic cycle-
consistency loss is sometimes extended with additional, application-specific
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constraints, e.g., by encouraging structural or anatomical consistency between
domains [102–104]. Other works using CycleGAN align domains based on
the output of auxiliary tasks such as segmentation [105–107], or by directly
matching feature values [108, 109]. Some other works use atlas registration
[110] or a student-teacher model with inter- and intra-domain teachers [111]
to improve the results.

In general, cycle-consistency alone is not sufficient to learn reliable transla-
tions [94]. Additional constraints, and corresponding assumptions about the
domains, are required to get usable results. Evenwithout additional constraints,
these image-to-image translation models use a convolutional approach that
assumes that images have similar spatial arrangements across domains.

5.2.2 Feature-level domain adaptation

Adversarial domain adaptation by learning domain-invariant feature represen-
tations [89], without explicitly reconstructing images from the target domain,
is also commonly used for medical image classification and segmentation.
Kamnitsas et al. [75] presented an early version of this approach for brain
lesion segmentation. The method was later applied for many other tasks,
such as anatomical structure segmentation [112], multi-modal brain MRI [113],
colonoscopy images [114], or fundus imaging [115]. Instead of learning a
fully domain-invariant model, some approaches try to disentangle domain-in-
variant and domain-specific features [116, 117], which allows them to exploit
domain-specific information where necessary.

Feature-level domain adaptation can be extended with additional con-
straints, e.g., by adding structural constraints on the output of a segmentation
model. Bateson et al. [118] argue that adversarial training may not be suit-
able for adapting segmentation networks, and suggest using domain-invariant
prior knowledge about common anatomical structures to direct the adaptation.
Similarly, Cui et al. [119] used several structural constraints to capture common
cardiac structure acrossMRI and CT.More indirectly, Wang et al. [120] applied
an adversarial domain discriminator to a segmentation output. Li et al. [111]
provided additional semantic feature maps to the discriminator, to exploit
domain-invariant spatial patterns.

Domain adaptation can also be guided by adding auxiliary tasks to the
learning objective. For example, Koohbanani et al. [121] used domain-specific
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pretext tasks in a self-supervision setup. Luo et al. [122] used task-specific
discriminators to improve domain invariance. Chen et al. [123] proposed a
combination of feature-level and image-level methods.

5.3 Methods

5.3.1 Domain adaptation with a neural network

In this chapter, we consider domain adaptation in a deep neural network with
the following architecture: an encoder that maps the domain-specific input
to a latent, domain-invariant feature representation, and a shared prediction
model that uses the intermediate representation to make a prediction. We use
classification as the prediction task in this chapter, but this could also be a
segmentation or regression task. The domain adaptation in the encoder can
take two forms: using a single encoder that is used for both domains, or using
a separate, domain-specific encoder for each domain.

The first approach requires a single, common model that works well for
data from both domains. Since it uses the same feature extraction path for
both domains, it will automatically map both domains to the same repre-
sentation if the domains are fairly similar. However, the approach provides
limited flexibility to adapt to larger differences between domains, and is likely
to focus on domain-invariant features that have similar appearance in both
domains.

The second approach uses a separate encoding path for each domain. We
use this architecture in this chapter. In contrast to a shared encoder, domain-
specific encoders can accommodate large differences between domains: if the
encoders are complex enough, they can map the inputs to a shared encoding
that is common to both domains. However, the increased power and flexibility
also increase the risk that the encoders learn inconsistent mappings, since
there are no shared features that link the two encoding branches. We will
revisit this limitation in Section 5.4.

5.3.2 Adversarial domain adaptation

The source encoder and the shared prediction model can be trained with a
supervised learning objective, computed on labelled data from the source
domain. To train the target encoder and learn a domain-invariant feature
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Input domain A Input domain B

Encoder domain A Encoder domain B

Shared representation

Classifier
Domain discriminator

Domain A Domain B

Figure 5.1: The domain adaptation model uses a separate encoding branch for each
domain. The output of these encoders is forwarded to a shared classification
network and to a domain discriminator. A domain adversarial learning
objective is applied to encourage the encoders to learn a shared, domain-
invariant representation space.

representation, we need an unsupervised objective that can use unlabelled
target data. In this chapter, we use an adversarial domain adaptation objective.

Adversarial learning [124] is commonly used to train generative models. A
discriminator is trained to discriminate between samples from a real distribu-
tion and samples generated by a generator model. By optimizing the generator
to maximize the loss of the discriminator, the samples generated by the model
will start to resemble those from the real distribution.

In domain adversarial learning [89, 125], the discriminator is presented
with feature representations of samples from the source and target domain,
and is trained to predict the domain of each sample. The discriminator loss
is included as an adversarial term in the learning objective for the encoders,
which encourages them to learn domain-invariant representations that have
similar distributions in both domains.

5.3.3 Architecture and learning objectives

Figure 5.1 shows the model with domain-specific encoders as it is used in this
chapter. We denote the domain-specific encoders as Fsrc for the source and
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Ftgt for the target domain. Given an input x, we use the appropriate encoder
F ∈ {Fsrc , Ftgt} to compute the representation F (x). This representation is
then used as input for a shared classificationmodelG to compute the prediction

ỹ = G (F (x)) . (5.1)

The learning objective consists of a classification component and a domain-
adversarial component. The classification component is computed only for
the source samples, using the ground-truth label y to compute the binary
cross-entropy loss:

Lclass = −y log ỹ − (1 − y) log (1 − ỹ) . (5.2)

A separate domain discriminator D is used to encourage the two encoders
to produce domain-invariant representations. The discriminator is trained
with a binary cross-entropy loss to predict the domain of a sample given its
intermediate feature representation:

Ldisc =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

− logD (Fsrc (x)) , if x is from the source domain;

− log (1 − D (Ftgt (x))) , if x is from the target domain.
(5.3)

We reuse this learning objective Ldisc as an adversarial term in the learning
objective for the encoder. We optimize the encoder and classifier to minimize
the classification loss and maximize the discriminator loss:

Lcombined = λclassLclass − λdiscLdisc . (5.4)

5.4 Problem analysis

In the absence of paired samples, the domain adaptation model can only
compare domains at a distribution level. This has consequences for the quality
and correctness of the results.

5.4.1 Two phases of domain adaptation

For the following analysis, we will divide the unsupervised domain adaptation
task in two phases. First, the method must determine the structure of the input
space for each domain, e.g., by identifying clusters of samples. Second, the
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methodmust match the structures in both domains in order to map the feature
representations of samples from one domain to the other. If both phases are
successful, the domain adaptation will result in the correct classification on
the target domain.

Our analysis is further based on the smoothness assumption in machine
learning, which states that samples that are close in the input space are likely to
belong to the same class. Similarly, domain adaptation learns a smooth map-
ping between domains: samples that are close together in the target domain
will most likely be mapped close together in the source domain.

For simplicity, for this problem analysis, we will assume that the data dis-
tribution is so smooth that the samples in each domain can be grouped in a
number of distinct clusters. In practice, we may not be able to find perfectly
distinct clusters in the data – for example, because samples from different
classes may have very similar appearance and classes may overlap – but this
will not affect our general conclusion.

Ideally, each class would correspond to a single cluster in each domain,
and the task of domain adaptation would be to link each cluster to the correct
cluster in the other domains. In practice, it is likely that the classes are more
heterogeneous and consist of multiple subclusters. This complicates the task
of the domain adaptation algorithm, which must now identify all subclusters
and link them to the correct classes in the other domain.

Both domain adaptation phases must be successful to obtain a good clas-
sification result. Observing the target classification accuracy at the end is
not sufficient to identify which of the two parts failed: a low target accuracy
combined with a high source accuracy could mean that both clustering and
mapping failed, but it could also mean that the model found the right clusters
but mapped them incorrectly between domains.

5.4.2 Unsupervised domain adaptation requires additional assumptions

Consider a thought experiment with a balanced binary classification problem,
in which each class contains fairly homogeneous samples. Given the in-class
homogeneity, it is easy to find the correct clusters. Linking those clusters across
domains is more difficult: without additional information, it is impossible to
say which cluster in the target domain belongs to which cluster in the source
domain. As a result, domain adaptation has only a 50% chance of success.
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In unsuccessful cases the clustering may still work, while the classification
accuracy may be close to zero because the clusters are linked incorrectly.

Observe that the problem in this simple example would not occur if the
classes were not balanced. If the class imbalance was similar for both domains,
the model could use the size of each cluster to learn a correct mapping.

However, the result also depends on the assumption that the samples within
each class are sufficiently homogeneous. In practice, this will almost never be
the case. For example, in some applications different types of tissue might map
to the same class. In segmentation tasks, voxels near the edge of a structure
may have a different appearance from voxels located in the center, even if the
whole structure belongs to a single class, and the representation of near-edge
voxels may even vary with orientation. For this analysis, we therefore assume
that each class consists of multiple subclusters that are internally homogeneous.
This makes it more difficult to find the correct solution, since the required
class balance can be achieved with different combinations of subclusters.

Consider an experiment in which the data is subdivided in 10 homogeneous
subclusters of equal size. If the class balance in the source domain is 80–20,
that is, 8 and 2 subclusters per class, this can be replicated in the target domain
by mapping any combination of two subclusters to the minority class. Since
there is no way for the algorithm to identify which combination is correct, the
domain adaption is likely to fail even if it discovers the clusters correctly.

In this chapter, we argue that the conclusions for these thought experiments
can be extended to domain adaptation on real datasets. We provide experi-
mental verification of these specific results on synthetic data in Section 5.7.2.

5.5 Exploiting domain-invariant properties

In the previous section, we argued that unsupervised domain adaptation is
unlikely to learn correct mappings if there is no information to link subclusters
across domains. In practice, of course, this is too pessimistic. Unlike the dataset
in our example, most real-world datasets will have some domain-invariant
properties that can be exploited to align domains.

The outcome of adversarial domain adaptation depends on the initial rep-
resentations, which usually depend on randomly initialized weights. Since
the training makes small, incremental changes to the encoders to match dis-
tributions, it can increase similarity of clusters that are already similar, but
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it is unlikely to swap entire clusters. If the initial guess was correct, the final
mapping is likely to be correct as well.

Fortunately, the initial mapping and subsequent optimization are not com-
pletely random, but depend on biases in the data and the model. If these
biases are helpful, domain adaptation is more likely to succeed. In this section,
we introduce four domain-invariant properties that often appear in medical
images and may provide a useful domain adaptation bias. We will then discuss
how these properties can affect the domain adaptation results implicitly.

5.5.1 Similar class imbalance

In Section 5.4.2, we argued that class imbalance might be used to link do-
mains with homogeneous classes. Many real-life datasets show some class
imbalance, but most are also heterogeneous. Our thought experiment showed
that this makes the imbalance less useful, because the subclusters in the data
can be combined in arbitrary ways to obtain the required class balance. The
experiments later in this chapter confirm this.

5.5.2 Similar intensities

If the average image intensities are consistent between domains, e.g., if a
class that is brighter in one domain is also brighter in the other domain, this
similarity can be used to learn themapping between domains. This assumption
often holds for images from the same imaging modality. For example, CT
images from different scanners will show roughly similar intensity patterns.

This similarity can be exploited explicitly (models with shared encoders
are based on this assumption), but it can also affect the domain adaptation
implicitly. Here, we argue that the architecture and initialization of the model
can interact with intensity similarities in the data to bias the model towards
particular mappings. Given a random initialization of the weights and a
standard activation function, the magnitude of the input intensities is reflected
in the representation: on average, a class with inputs around zero will produce
smaller absolute feature values in the encoder output than a class with larger
input values. This initial bias is consistent for all domain-specific encoders,
and can be used to map classes with similar intensity to similar feature values.
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5.5.3 Similar spatial structures

In applications with spatial inputs, source and target domains may have similar
spatial arrangements. For example, inMRI andCT images of the same anatomy,
the modalities produce images that show the same anatomical structures, even
if the appearance is different. We argue that domain adaptation could exploit
spatial similarities like these if the models use convolution.

With convolutional encoders, the latent representation preserves the spatial
structure of the input. Even with a random initialization of the weights, the
output of convolutional encoders in different domains will generate represen-
tations that are spatially similar. As long as the classes have the same spatial
arrangement in both domains, these similarities could be exploited by the
model to link the domains, even if the structures themselves have a different
appearance.

5.5.4 Similar local texture and intensity distributions

A fourth source of similarities is local texture. Especially in segmentation
tasks, texture information could be used to identify components if the textures
are similar across domains. Using convolution makes the encoders sensitive
to type and amount of texture: heavily textured areas may produce a differ-
ent convolution output than areas with a lighter texture, even with random
initialization of the weights. This could bias the encoders to learn similar
representations for similarly textured areas, which would lead to a correct
mapping if the texture has similar meaning across domains. In medical imag-
ing, this kind of texture similarity can appear in multi-view images from the
same imaging modality, such as multi-modal MRI or smaller variations in
scanning protocol. On the other hand, cross-modality applications such as
MRI-to-CT could have different textures in each domain, which could lead to
a bias towards incorrect mappings.

5.6 How to measure domain adaptation success?

Weuse several metrics tomeasure the performance of themodels, based on the
two phases in the domain adaptation process that we identified in Section 5.4.1:
finding clusters in each domain, and linking those clusters across domains.
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5.6.1 Measuring the correctness of the mapping

Ultimately, the performance of domain adaptation is defined by the classifi-
cation accuracy on the target domain. In the experiments in this chapter, we
compute the classification accuracy on the source domain and on the target
domain. Since the classifier is trained only on the source domain, we expect
the performance on the target domain to be lower, but ideally the two should
be as close as possible.

5.6.2 Measuring mapping quality

However, as discussed in Section 5.4.1, classification accuracy alone does not
provide the full picture, since it measures the combined success of both domain
adaptation phases. We use three metrics to evaluate the clustering phase
independent of the linking phase.

Compensated accuracy. A simple case of cross-domain confusion in a binary
classification task is a scenario where the domain adaptation method correctly
finds two clusters that correspond to the two classes in the target domain, but
maps these clusters to the incorrect class in the source domain. To measure
this effect, we define the compensated accuracy as

compensated accuracy = max(accuracy, 100% − accuracy).

Mapping confidence. In more complicated problems with heterogeneous
classes, we can assume that each class is made up of several subclusters. We
define a domain adaptation confidence score thatmeasures whether the domain
adaptation model correctly identifies the subclusters in the data, independent
of whether they are assigned to the correct class.

The metric is defined using subcluster labels. We first compute the subclus-
ter confusion matrix CM and the class balance CB:

CM(Y ,C) =∑
i
I( ŷ i = Y , c i = C), (5.5)

CB(Y) = 1
N ∑i

I(y i = Y), (5.6)

where I(⋅) is the indicator function, Y ∈ 0, 1 is a binary class, C is a subcluster,
N is the number of samples, and ŷ i , y i , c i are the predicted class, the ground-
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truth class, and subcluster of sample i, respectively. We then compute the
class-balanced weighted confusion matrix WCM and the class difference CD:

WCM(Y ,C) = CM(Y ,C)/(2 ⋅CB(Y)) (5.7)

CD =∑
C

WCM(0,C) −WCM(1,C). (5.8)

Finally, we compute the confidence as

Confidence =∑
C
max
Y
(WCM(Y ,C)) − ∣CD∣ . (5.9)

The confidence score ranges between 0% and 100%. If the model identifies
all subclusters correctly (i.e., samples from one subcluster are all assigned to the
same class), the confidence score will be 100% independent of the correctness
of the classification. If the model achieves no clustering (e.g., samples from
one subcluster are equally distributed over the the two classes), the score is
0%. For a dataset with two homogeneous classes, the confidence is equal to
the compensated accuracy.

Linear CKA. At the level of the encoder outputs, we compute the represen-
tation similarity using linear CKA (centered kernel alignment [126]). Linear
CKA measures the content-based feature similarity while allowing for dif-
ferences in representation, giving an indication of how much information is
shared by both domains. The method is often used to compare the feature
representations of different networks trained on the same data, but we use it
to compare representations of paired samples across domains. We refer to
Kornblith et al. [126] for the full definition. In our experiments, the linear
CKA ranges from 0 (no alignment) to 100 (complete alignment).

5.7 Experiments and results

5.7.1 Implementation

We use neural networks to implement the domain-specific encoders Fsrc and
Ftgt, the classifier G, and the domain discriminator D. The architectures of
these networks are described in the following sections. In some experiments,
we vary the level of the intermediate representation: we use the same set of
layers for F + G combined, but change how they are divided between the
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encoders F and the classifier G. The discriminator and classifier are optimized
with a binary cross-entropy objective, using a gradient reversal layer between
the discriminator and the encoders to implement the adversarial objective. All
models are implemented in PyTorch and trained using the Adam optimizer
until convergence. Detailed architectures and hyperparameters are shown at
the end of this chapter.

5.7.2 Experiments with synthetic data

Data and architecture. We construct a synthetic, binary classification prob-
lem with 10 input features, x ∈ R10, and generate samples for two domains
with identical or different input representations (Table 5.1), according to the
following settings:

• For “Two −1/ + 1”, we construct a problem with two clusters: samples
[−1,−1,−1,−1,−1,−1,−1,−1,−1,−1] for class 0 and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] for
class 1 in both domains (i.e., both domains receive the same input).

• The variant “Two −1/ + 1, inverted” uses the same type of samples, but we
invert the labels in the target domain: [−1, . . . ,−1] corresponds to class 1 and
[1, . . . , 1] to class 0, simulating a very strong difference between domains.

• Similarly, “Two 0/1” and “Two 0/1, inverted” use samples with values
[0, . . . , 0] and [1, . . . , 1] with equal or swapped classes, respectively.

• Finally, “Ten” includes samples with one-hot encoding, representing 10
different clusters: from [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] to [0, 0, 0, 0, 0, 0, 0, 0, 0, 1].
In our experiments, we assign each cluster to one of the output classes,
depending on the required class balance: for example, we assign 2 clusters
to class 0 and 8 clusters to class 1 to simulate a 20 − 80 class balance.

For all settings, we add random noise to all features, sampled from a uniform
[−0.5, 0.5] distribution. This creates many unique samples, without introduc-
ing class overlap. All experiments use the same, very simple architecture with
linear encoders and decoders (Figure 5.2).

Results. We run the experiment described in Section 5.4.2 with the synthetic
datasets. With homogeneous and balanced classes (experiment “Synthetic two
−1/+ 1, Balanced 50–50” in Table 5.2), the model obtains a perfect classification
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Synthetic dataset Clusters Source Target

Two −1/ + 1 2 −1/ + 1 −1/ + 1
Two −1/ + 1, inverted 2 −1/ + 1 +1/ − 1
Two 0/1 2 0/1 0/1
Two 0/1, inverted 2 0/1 1/0
Ten 10 One-hot One-hot

Table 5.1: Synthetic datasets. Datasets with two clusters use a feature vector filled with
the same value. Datasets with ten clusters use a one-hot encoding with the
feature corresponding to the cluster set to 1. Uniformly distributed noise is
added to all features.

accuracy on the source domain. On the target domain, however, the average
classification accuracy is much lower. Looking closer, we observe that the
target accuracy in individual runs is either 0% or 100%, while the compensated
accuracy is always 100% for both domains. This confirms our earlier prediction
that the model can easily find the clusters in the data, but is unable to reliably
find the correct link between domains.

Next, we try an experiment with unbalanced classes (experiments “Syn-
thetic two −1/ + 1, Unbalanced 20–80” and “— 80–20”). The class imbalance
helps the model to find the correct mapping, resulting in a perfect target ac-
curacy in all runs. As hypothesized in Section 5.4.2, class imbalance is not
sufficient in datasets with heterogeneous classes. When we perform the same
experiment with heterogeneous classes (experiments “Synthetic ten”), we see
that the model fails to learn a good target classification. The high confidence
scores indicate that the model is able to find the subclusters, but it is unable to
link them correctly between domains. We confirmed this by inspecting the
confusion matrices (Table 5.5).

Finally, we find that the domain adaptation is sensitive to the representation
of the input features. We repeat the experiments with homogeneous classes,
but switch the input features from {−1,+1} to {0, 1} (experiments “Synthetic
two 0/1”). With these input values, even with balanced classes, the model now
learns a perfect accuracy on the target domain in almost all runs. We explain
this surprising result with the bias predicted in Section 5.5.2: the representation
of the data interacts with themodel, introducing a bias that causes themodel to
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learn the same representation for both domains. We find confirmation in the
results for experiments with inverted target features (experiments “Synthetic
0/1, inverted”), in which the models reliably learn the incorrect mapping.

5.7.3 Experiments with MNIST digits

Data. We use the 28×28-pixel MNIST1 digit images with intensities scaled to
[0, 1], using the original training and test splits. We convert the original 10-class
problem into a binary classification task by grouping the digits {0, 1, 2, 3, 4} and
{5, 6, 7, 8, 9}. To simulate a 20–80 or 80–20 class imbalance, we respectively
classify {0, 1} vs {2, 3, . . . , 9} and {0, 1, . . . , 7} vs {8, 9}. In all cases, we use
the original digit labels to compute our subcluster-based confidence metric.

We perform experiments with three variations for the target domain: 1. stan-
dard, with original images, similar to the source domain; 2. inverted, with
inverted intensities (1 − the original intensity) to remove intensity-based simi-
larities; 3. flipped, with images horizontally and vertically mirrored to remove
most of the spatial similarities between domains.

Architectures. Weuse a convolutional networkwith domain-specific encoders
(Figures 5.3 and 5.4). For the spatial encoder models, we join the domain-
specific encoders at the final spatial layer, just before global pooling. This
gives the domain adapation access to the final spatial feature maps. For the
dense encoder models, we join the encoders just after the global pooling layer,
which means that the domain adaptation method does not receive any spatial
information.

Results. The results in Table 5.3 show that the domain adaptation model relies
on spatial and intensity similarities to link the domains. In all experiments, the
models with spatial encoders achieve a higher target accuracy than the models
with dense encoders. The spatial encoders fail if they are applied to a data with
a flipped target domain, because there are no spatial similarities to rely on. At
the same time, the models with spatial encoders are able to learn with large
intensity shifts: the target accuracy on a target domain with inverted images is
similar to that on standard images. However, the linear CKA scores are lower,
which suggests that the representation still depends on intensity information.

1. http://yann.lecun.com/exdb/mnist/
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The dense encoders have a low target accuracy on the standard domain
with balanced classes, but show a reasonably high confidence. This indicates
that they can still find some clusters in the data. The models fail completely
when the target images are inverted, which shows that they rely on intensity
similarities to link the domains.

Surprisingly, the linear CKA scores of the dense encoder model drop when
the target images are flipped. This is counter-intuitive, because these models
do not receive any spatial feature maps. We suspect this could be evidence
for our fourth bias (Section 5.5.4): the early convolution layers encode local
texture information that influences the later, global feature representations.

5.7.4 Experiments with brain MRI scans

Data. We present a brief demonstration on brain MRI scans from the BRATS
2015 dataset [1]. We think it is likely that subclusters as discussed in this chapter
appear in any realistic dataset. However, to properly evaluate and observe the
behavior, we require a dataset with known subset labels.

The brain tumor segmentation dataset includes four MRI sequences (T1,
T1 with contrast, T2, FLAIR) and manual segmentations of four tumor com-
ponents (necrosis, edema, non-enhancing tumor, and non-enhancing tumor).
We extract 2D patches of 15 × 15 pixels, labelled with the class of the center
pixel and balanced to have an equal number of samples per class. We define a
binary classification problem by combining the BRATS labels into two classes:
necrosis/edema and non-enhancing/enhancing tumor, which roughly corre-
spond to the outer and inner part of the segmentation, respectively. We use
the original class labels as the subclusters in our analysis.

Architectures. We compare four models, all based on the same architecture
but joining the source and target branches at different levels (Figures 5.5 to 5.8).
The spatial encoder, early join model joins the representations at an early spatial
level (after the first pooling layer). This makes it relatively easy to join the
domains if the domains are fairly similar, but also limits the complexity of the
transformations that can be modelled. The spatial encoder, late join model
joins the representations before the global pooling layer. This allows the model
to learn more complex transformations, supporting larger differences between
domains, but the increased complexity will also make it more difficult to learn
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the correct transformation. Because the representations are joined before
global pooling, this architecture can still exploit spatial similarities. The dense
encoder model joins the representations after global pooling, removing spatial
information. The posterior join model joins the domain-specific branches only
at the level of the final output. This model has the least information, and must
link the domains based on the posterior distributions.

Results. Table 5.4 shows the results of these fourmodels on the BRATS dataset.
This task is more complicated than those in our previous experiments. The
early-join spatial encoder achieves a reasonable target accuracy in a number of
runs, but not all. The confidence and linear CKA scores suggest that this model
also has modest success at identifying the clusters. The scores for the late-
join spatial encoder and the non-spatial models are much worse. Neither the
confidence, nor the accuracy on the target domain are very good, indicating
that the domain adaptation fails to find clusters or link them between domains.
The linear CKA scores are very low, indicating that the models learn very
dissimilar representations. On this dataset, spatial information is crucial for
the model to learn a correct mapping between domains.

5.8 Discussion

In this chapter we explored the limitations of unsupervised domain adapta-
tion, using adversarial learning to learn domain-invariant representations.
We addressed a common domain adaptation scenario where labelled training
data is available for the source domain but not for the target domain, and
where there are no paired samples that can be used to learn correspondences
between domains. In this setting, adversarial domain adaptation attempts
to learn a domain-invariant representation by aligning the source and target
distributions in the latent feature space. We showed that this unsupervised
distributionmatching may lead to incorrect results, because there is no guaran-
tee that similar samples in different domains will be mapped to similar latent
representations. However, we also observed that domain-invariant properties
of the data can introduce a bias that helps the model find the correct mapping.
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5.8.1 Unsupervised domain adaptation without paired samples is flexible
but unpredictable

In our experiments, we used models with domain-specific encoders. Using
domain-specific encoders instead of a single, shared encoder allows the model
to accommodate large differences between domains. This is convenient if
the domains are very different, because the encoders can learn a domain-
specific mapping for each domain. In comparison, a model with a single
encoder is restricted to extracting domain-invariant features that have a similar
appearance in both domains.

The flexibility afforded by the domain-specific encoders comes at a cost:
without labelled target data or paired samples, it is difficult to link the domains
correctly. In Section 5.4, we discussed that there are many possible ways to
map samples between domains, and there is no guarantee that the model
will automatically find the correct solution. The synthetic experiments in
Section 5.7.2 showed a clear example of this problem: the models learned a
random mapping that was either completely correct or completely wrong.

5.8.2 Similarities between domains may help or hinder the domain adaptation

Despite the lack of guarantees, unsupervised domain adaptation can still
succeed if the domains are sufficiently similar. In Section 5.5, we discussed
four domain-invariant properties that are commonly seen in medical imaging
data, and which may provide a useful source of domain adaptation bias:

• The model can use the class imbalance to identify classes, if this is similar
between the source and target domains. This is is more likely to work in
datasets with fairly homogeneous classes, such as our synthetic example.

• The model can match classes based on average intensity, if this is simi-
lar in both domains. We saw evidence for an intensity-based bias in the
experiments with synthetic and MNIST data.

• The model can use the large-scale spatial similarities to match classes. This
is sensitive to rotations and inversions, but can be very powerful if the
images in both domains have a similar spatial structure. The convolutional
feature extraction layers preserve the spatial arrangement of the input, if
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the encoding branches are joined at a spatial level. We observed that spatial
information was important in our MNIST and BRATS experiments.

• The model might use local textures to match classes based on the strength
of the textures in the image. This requires that the texture is comparable
between domains, which might be difficult in more complex tasks, such as
between CT and MRI. This effect is more difficult to measure, but we saw
signs of this in the confidence scores of the dense encoders in some of our
experiments.

Since many medical datasets exhibit some of these similarities, the domain
adaptation process may be biased towards learning the correct mapping. Many
domain adaptation approaches from the medical imaging literature rely on
these similarities between domains explicitly, either by using an architecture
with shared encoders or by introducing additional constraints in the domain
adaptation process. However, we found that these assumptions are also used
implicitly in a model with domain-specific encoders.

5.8.3 Limitations and practical consequences

The internal behavior of domain adaptation methods is difficult to observe
in practice. Our experiments on synthetic and MNIST data provided useful
insights in the process, but the models and data are simpler than those in
most real-world applications. The relatively homogeneous data allowed us to
compute the subcluster-based metrics required for our analysis, but real data
will be more heterogeneous and usually comes without subcluster labels. Our
experiments on BRATS used more realistic data, but were less transparent.

The observations in this paper were made on models using domain-specific
encoders. While this allows a very flexible mapping between domains, it also
makes it harder to learn a correct mapping. In contrast, models with shared
encoders may be more likely to find a correct mapping if the domains are
somewhat similar, but may have problems with larger differences between
domains.

Despite these limitations, we believe that most of our conclusions also apply
to more advanced models. Since there are no guarantees that unsupervised
domain adaptation works in the general case, its success for specific appli-
cations must mean that the models exploit some underlying similarities in
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the data. The four assumptions discussed in Section 5.5 suggest what those
similarities could be. We believe that many medical imaging tasks satisfy some
or all of these assumptions, and suspect that this is why domain adaptation
often succeeds.

It is important to be aware of these properties when applying domain
adaptation to a new dataset. Even if the assumptions are not explicitly encoded
in an auxiliary learning objective or constraint, theymay still affect the outcome
through implicit biases in the models. We would also like to note that this is
not unique to domain adaptation at a feature level. Image-to-image translation
methods such as CycleGAN, which constrain the translation to maintain the
global spatial structure of the translated images, will face similar problems
when translating local textures and intensities.

5.9 Conclusion

Learning unsupervised domain adaptation from unpaired samples is an am-
bitious goal, and to some extent it is surprising that it works at all. In this
chapter, we argued that successful unsupervised domain adaptation relies on
similarities between domains. We explored several types of similarity that are
common in medical images, and find that they can indeed help to push the do-
main adaptation in the right direction. However, even if those assumptions are
satisfied, a correct domain adaptation is not guaranteed. In our experiments
on the BRATS dataset, unsupervised domain adaptation failed for anything but
the simplest case. In practice, we suspect that unsupervised domain adaptation
can work well if domains are already similar, but needs additional constraints
if they are not.
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Implementation details

All experiments were implemented with PyTorch. In all experiments, domains
A and B were trained with independent training samples from the same distri-
bution. For the synthetic experiments, we used an infinite stream of random
samples. For the MNIST experiments, we used the official training and test
split. For the BRATS experiment, we used the high-grade glioma subset and
split the data in separate training, validation and testing sets, keeping samples
from the same subject in a single subset. We used 80 subjects for training
domain A, 80 subjects for training domain B, 30 subjects for validation, and
30 subjects for testing. For each subject, we selected patches centered on pixels
from the ground-truth segmentation, while maintaining the class balance.

Our aim was to identify scenarios where domain adaptation could poten-
tially work, but was unable to link the two domains. Consequently, we selected
hyperparameters based on the results on domain A, while checking the confi-
dence on domain B to ensure that the adaptation did not map all samples to a
single class. Using the selected hyperparameters, we ran 25 experiments with
different random initializations to obtain the results shown in the tables.

We fixed the weight of the classification term in the learning objective
to λclass = 0.1 for all experiments. For the discriminative, we chose one of
λdisc ∈ {0.3, 0.2, 0.1, 0.01, 0.001, 0.0001} based on the performance on the
source domain.

The learning rate was chosen from {0.001, 0.0005, 0.0001, 0.00001}. For
the synthetic experiments, we used 0.001 for all experiments. For MNIST and
BRATS, we used 0.001, 0.0005, 0.0001 depending on the setting, but all three
values gave similar results.

We optimized the models using Adam with a minibatch size of 128, for 200
epochs (MNIST) or 100 epochs (other experiments). This was sufficient for all
networks to converge. We report the results at the end of the final epoch.
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Figure 5.2: Network architecture for the synthetic experiments.
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Figure 5.3: MNIST model: Spatial encoder.
Network architectures for the MNIST experiments. The division between
domain-specific encoders and the shared classifier depends on the experi-
ment.
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Figure 5.4: MNIST model: Dense encoder.
Network architectures for the MNIST experiments. The division between
domain-specific encoders and the shared classifier depends on the experi-
ment.
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Figure 5.5: BRATS model: spatial encoder, early join.
Network architecture for the BRATS experiments with spatial encoders.
The division between domain-specific encoders and the shared classifier
depends on the experiment.
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Figure 5.6: BRATS model: spatial encoder, late join.
Network architecture for the BRATS experiments with spatial encoders.
The division between domain-specific encoders and the shared classifier
depends on the experiment.
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Figure 5.7: BRATS model: dense encoder.
Network architecture for the BRATS experiments with dense encoders.
The division between domain-specific encoders and the shared classifier
depends on the experiment.
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Figure 5.8: BRATS model: posterior join.
Network architecture for the BRATS experiments with dense encoders.
The division between domain-specific encoders and the shared classifier
depends on the experiment.
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6
Discussion

This thesis presented views on representation learning as a method for domain
adaptation in medical image analysis. Domain adaptation can improve the
performance of models that are trained on data from different domains, such
as images from different scanners, hospitals, or patient groups. We evaluated
this approach in experiments on multi-modal data, with images made with
different MRI settings. In this section, we combine the different perspectives
and make some final observations.

This discussion is organized as follows. Section 6.1 summarizes the main
findings of each chapter. We then connect the work in this thesis to the general
field of domain adaptation for medical imaging: Section 6.2 addresses the
main assumptions behind the domain adaptation approach, and Section 6.3
discusses how these assumptions translate to the different domain adaptation
methods. Section 6.4 discusses some limitations. For a more general outlook,
Section 6.5 discusses the challenges of adapting computer vision methods to
the medical domain. Section 6.6 considers possible future work, including the
application of domain adaptation in clinical practice. Section 6.7 concludes
the thesis.

6.1 Main findings

In Chapter 2, we compared discriminative and generative representation learn-
ing on two lung CT analysis tasks. We evaluated features learned by convo-
lutional restricted Boltzmann machines (RBMs) with and without a discrim-
inative learning objective. The RBM-learned features often outperformed
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predefined Gaussian filter banks. By observing the performance of a classifica-
tion model, we found that combining discriminative and generative learning
always produced better features than generative learning alone, and often also
outperformed pure discriminative learning.

In Chapter 3, we used representation learning for image synthesis in a multi-
modal brain segmentation task, withMRI scans acquiredwith different settings.
We also simulated scenarios with missing modalities and used autoencoders
and RBMs to synthesize the missing images. Surprisingly, we found that
classifiers trained on these synthesized images sometimes performed better
than classifiers trained on original data. The synthesized data especially helped
our linear SVMs, but hardly improved our random forests. We suspect that
the synthesis models applied complex, non-linear transformations to the data,
which were more useful to linear classifiers than to classifiers that could learn
these transformations themselves. The improved performance may be due not
to the synthesis of missing modalities, but to the underlying transformation.

In Chapter 4, we considered the task of cross-modality representation learn-
ing for two multi-modal MRI datasets. We trained models to translate images
between modalities, encouraging them to learn modality-invariant represen-
tations that could be used as input for a single, shared classifier. We compared
several techniques – modality dropout, feature normalization, and an explicit
similarity term – and found that a combination of all three produced the most
modality-invariant features. Most models tended to learn a combination of
modality-specific and modality-invariant features. While modality-invariant
features are important for cross-modality classifiers, we observed that same-
modality classifiers may perform better if the representation also contains
some modality-specific information.

In Chapter 5, we explored the limits of representation learning in unpaired,
unsupervised domain adaptation. We used domain-adversarial learning to
train models with domain-specific encoding branches, learning shared rep-
resentations for cross-domain classification. We found that this relies on
similarities between the domains, and suggested four types of similarity that
often apply in medical imaging. Although these similarities are sometimes
included explicitly as a constraint or learning objective, we found that they
can also affect the models implicitly: the architecture and initialization may
bias the networks towards learning similar representations for similar inputs.
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Several themes appear throughout this thesis. Representation learning for
one modality (Chapter 2) is extended to multiple modalities (Chapter 3) and
used for cross-modality learning, using domain-specific encoders to learn
cross-modality features (Chapters 4 and 5). Each chapter covers a different
representation learning objective: generative learning (Chapter 2), image syn-
thesis (Chapter 3), representation similarity on paired features (Chapter 4), and
domain-adversarial learning (Chapter 5). All chapters use a hybrid learning ob-
jective, either to combine generative and discriminative learning (Chapter 2),
or to combine discriminative learning and domain adaptation (Chapters 3 to 5).
Finally, the various ingredients are combined in cross-domain classification
and domain adaptation experiments (Chapters 4 and 5).

6.2 Assumptions

6.2.1 Do we need domain adaptation?

When training a machine learning model with data from multiple sources, we
should first determine whether domain adaptation is necessary, and if so, to
what extent and in what form.

At one extreme, we could ignore the problem and pretend that all samples
come from the same domain. This can be attractive if the domains are similar
enough and sufficient training data is available from all domains. In that case,
the model would learn features that work for all domains, a generalization
problem not unlike handling differences between patients. If required, the
cross-domain performance could be further improved using simple tricks such
as normalization or data augmentation, for example, by training the model to
be invariant to intensity differences.

The other extreme was considered in Chapter 5, where we assumed that the
domains were very different and that there was no labelled training data from
the target domain. It turns out that this scenario is difficult to solve without
introducing additional assumptions about the data.

Most practical applications with data from multiple domains will fall some-
where in between: domains that are different enough to need domain adapta-
tion, but sufficiently similar to make it a success.
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6.2.2 Translating images vs learning shared representations

If we use domain adaptation, we must decide if we do this at the input level, by
translating images between domains, or at the level of an intermediate feature
representation, by learning domain-invariant features.

Translating images is conceptually simple and its results can be evaluated
visually, but it is computationally inefficient and more difficult than necessary,
since most information in an image will not be required for a classification
or segmentation task. The approach is also restricted in what it can learn:
it usually assumes that translated images are spatially similar, and can only
translate information that is visible in both domains. We tried image synthesis
with RBMs in Chapter 3, but found that the hidden feature representation was
more useful for classification. In recent years image-to-image translation was
popularised by the CycleGAN model [85], which uses generative adversarial
networks and a cycle-consistency loss to learn the translations.

It can be more effective and efficient to perform domain adaptation at a
feature level, by learning a domain-invariant representation. This approach is
often implemented with domain-adversarial learning [89], using an adversar-
ial domain discriminator to improve the domain-invariance of the features
(Chapter 5), but can also be implemented by directly minimizing the difference
between feature representations for paired samples from each domain (Chap-
ter 4). Compared with image translation, translating features can be more
efficient, because the model can build on the feature representation that is
already used for the main classification or segmentation model, and can ignore
irrelevant details. It is more flexible, at least theoretically, and can handle
large differences between domains, especially when using a separate encoding
path for each domain. It is even possible to combine domain-specific and
domain-invariant features if the prediction task requires this. However, the
result of feature-level domain adaptation can be hard to interpret and verify.

6.2.3 How much information is available?

Domain adaptation requires data from the target domain – or it would be
domain generalization – but there is some flexibility in what it needs. Paired
samples provide the most information, with known links between samples
from the source domain to corresponding samples in the target domain. In

118



6 . 2 . ASSUMPT IONS

medical imaging, these could be images from the same patient in different
scanners, or images from a multi-sequence dataset, for example. Given these
paired samples, the domain adaptation method can directly minimize the
difference between representations of the same sample in each domain. Paired
images are especially informative if they are spatially registered, but this is not
always required. We used this approach in Chapters 3 and 4.

If paired samples are not available, domains can be linked in other ways.
A popular method is based on distribution matching, e.g., by adversarial
domain adaptation [89], which assumes that the distribution of samples is
similar in all domains. We examined this method in Chapter 5. This can yield
undesired results, because unlabelled distributions can be matched in many
ways, and it is difficult to find the correct solution without labels. This problem
can be addressed by including additional information, such as labels for a
small number of target samples or labels for auxiliary tasks, or by including
constraints based on prior knowledge about the domains. This may require
additional assumptions about similarities between domains.

6.2.4 Which assumptions do we make about the domains?

Like all machine learning methods, domain adaptation methods make as-
sumptions about the data to achieve their results. Domain adaptation methods
assume that there are similarities between domains.

For example, many domain adaptation methods in medical imaging implic-
itly assume that the differences between domains are fairly small. For models
based on representation learning, we know this because many of them use
a shared encoding path for all domains. This greatly simplifies the domain
adaptation task, but restricts the models to features that can be extracted in a
similar way for all domains (Chapter 5).

But even in models with independent encoding paths, domain adaptation
will exploit existing similarities between the domains. Chapter 5 discussed
several types of similarity that often occur in medical images, such as intensity-
based or spatial similarities. These similarities are sometimes encoded explic-
itly in the form of constraints or additional tasks for the domain adaptation
model, but we observed that they can also implicitly affect the results, by intro-
ducing a bias that leads models to map inputs to similar features. It is useful
to be aware of these biases, because they can have positive or negative impact.
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6.3 Methods

6.3.1 How should we learn domain-invariant representations?

In this thesis, we discussed several methods to learn representations of image
data. The restricted Boltzmann machines (RBMs) from Chapters 2 and 3
are no longer part of the state-of-the-art in representation learning. These
probabilisticmodels are computationally expensive and can be difficult to train,
especially when extended to more than one hidden layer. This is disappointing,
because they are fun little models with useful properties, such as the flexibility
to accept and sample from incomplete inputs (Chapter 3), and are perhaps
less quick to overtrain (Chapter 2). Meanwhile, feed-forward networks, such
as CNNs and U-Nets and their many variations, have proven to be more
successful. We have used them exclusively in Chapters 4 and 5. They need a
supervised learning objective, but are reasonably efficient and very effective.

For cross-domain classification, the methods need to be adapted to make
the representations domain-invariant. This can be achieved by changing the
architecture, the training procedure, the loss, or a combination. This thesis
covered several of these approaches.

In Chapter 4, we used autoencoder-like networks trained with a cross-
modality reconstruction loss. Using modality dropout and feature normaliza-
tion as additional components, the models learned cross-domain representa-
tions. This approach required paired samples, but was relatively easy to train.
We compared a cross-modality reconstruction loss with optimizing a similarity
term directly on the feature representation, and found that a combination of
both methods worked best.

In Chapter 5, we used domain adversarial learning [89]. This is a common
approach in medical image analysis. The usual architecture consists of an
encoder that maps the input to a latent representation, a classifier or other
model that makes a prediction based on the representation, and a domain
discriminator that tries to predict the domain of the samples based on their
feature representation. By using this domain discriminator in an adversarial
learning objective, the encoders are encouraged to learn domain-invariant
representations, without requiring paired samples.

Both approaches offer a choice between a shared encoder and domain-
specific encoders. Most commonly used with adversarial learning is the shared
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encoder, which learns a single, domain-invariant feature extractor and is
relatively easy to train, but is limited in flexibility. We used modality-specific
encoders in Chapters 4 and 5. Each encoder learns a domain-specific mapping
to the common feature space, allowing for much larger differences between
domains. However, the model is so flexible that it requires paired samples or
other assumptions to learn a correct mapping.

A third approach is image-to-image translation, using models such as
CycleGAN [85], which learn domain-specific translations and have a flexibility
that is most comparable with models with domain-specific encoders. However,
they require other assumptions such as spatial similarity between the domains,
and like the representation-based methods, can learn incorrect mappings [93].

6.3.2 Domain-specific or domain-invariant features?

Most domain adaptation methods assume that both domains provide the same
information, in different forms, that can be mapped to a common representa-
tion without excessive information loss. Since this assumption never holds
completely, it is fairly common to see a decrease in same-domain performance
on the original domain. Although domain adaptation is primarily concerned
with learning domain-invariant features for cross-domain predictions, it may
be useful to keep domain-specific features as well, in scenarios where the orig-
inal same-domain performance is also important. For example, users may
prefer to have a single model that works well for both domains.

We briefly explored this question in Chapter 4, observing that our models
usually learned a combination of modality-specific and modality-invariant
features. We found that forcing representations to be too similar removed too
many modality-specific features, and would hurt the same-modality classifica-
tion accuracy. One way to allow models to learn domain-specific features is
by adding additional, domain-specific encoding branches. This approach is
used in recent works on domain disentanglement (e.g., [127]), for example.

Besides same-domain and cross-domain performance, users may also value
cross-domain consistency. An important advantage of automated predictions
is their objectivity and reproducibility: unlike human annotators, an auto-
matedmodel does not suffer from inter-observer and intra-observer variability.
Domain shift can introduce new variability in the form of domain-specific
biases, but domain adaptation may help to reduce those.
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6.3.3 How do we know if domain adaptation worked?

Domain adaptation can be unpredictable, especially in its unsupervised forms.
Theprediction results on the target domain, such as classification accuracy, give
a global indication of its performance, but do not provide any deep insights:
models with a similar low accuracy may fail for different reasons.

For practical applications, it is important to know why and how models
fail. A lower target accuracy could indicate a relatively harmless, random error
that applies equally to all samples, but it could also indicate a more serious,
systematic bias in the domain adaptation process. For example, it might be
acceptable if a tumor classifier makes small random prediction errors if they
are equally distributed over all samples, but not acceptable if the classifier
consistently misidentifies two tumor subtypes.

Observing the inner workings of a deep learning-based domain adaptation
model is not easy. In Chapter 5, we discussed domain adaptation as a two-step
process: first, the model must identify clusters in the data, then, it must link
these clusters between domains. The classification accuracy on the target
domain only measures the performance of both steps together. We applied
several metrics to measure the correctness of the clustering and linking steps,
but these metrics required detailed label information for the target samples
that is unlikely to be available in real applications.

It might seem that image-to-image translation, with its visual output and
the cycle-consistency, would be easier to check for undesired results. Indeed,
the convolutional components may ensure that the global spatial structures are
preserved. However, the underlying domain adaptation problems are similar
to those in feature-level adaptation: without paired samples, domains must be
matched at the distribution level, introducing ambiguities that are difficult to
resolve. This can lead to systematic errors and incorrect translations (see, for
example, the CycleGANmodels that hallucinate brain tumors when translating
MRI scans of healthy subjects, as shown by Cohen, Luck, and Honari [93]).

How best to evaluate domain adaptation remains an open research question.
For some applications, observing the final performance on the target set may
be sufficient, while for others the requirements may be stricter. In general,
supervised domain adaptationmay be considered easier to verify and therefore
‘safer’ than unsupervised domain adaptation, but unexpected problems can
also arise in the supervised case.
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6.4 Limitations

While the limitations of individual experiments are discussed in their respec-
tive chapters, there are two points that need to be addressed here.

6.4.1 Are imaging modalities domains?

In much of this thesis we looked at modalities – or more precisely: MRI
sequences1 – rather than domains. Multi-modal image analysis is interesting
in itself (e.g., when imputing missing data, as in Chapter 3), but it also provides
a useful playground for domain adaptation. Multi-modal data is relatively
easy to obtain: there are many public, multi-modal datasets, and the datasets
usually include images for each subject in all modalities. This makes it easy to
train and evaluate cross-modality translation models, as in Chapters 3 and 4.

In many ways, multi-modal image analysis may be more difficult than
‘real’ domain adaptation. When using data from different scanners or slightly
different imaging protocols, images from each domain may have a differ-
ent appearance, but they often contain similar information. In multi-modal
datasets, the differences between domains can be much larger: images from
different modalities may have a different appearance, but often also contain
different information. Most multi-modal datasets are not created for domain
adaptation enthusiasts, but because the modalities provide complementary
information that is needed for the classification or segmentation task. This
modality-specific information can make domain adaptation much more diffi-
cult, because a modality-invariant representation may lack some important
details that are required to achieve a good performance.

Nevertheless, it would be useful to compare our methods in a ‘real’ cross-
domain setting as well. The closest approximation in this thesis can be found
in Chapter 4, which used knee cartilage images acquired with fat-suppressed
and non-fat-suppressed MRI protocols. Although the images in this dataset
were paired and registered, the protocols provide fairly similar information,
and in most practical applications only one of them would be acquired.

1. Early on in my PhD, a friendly radiologist warned a colleague that “when Gijs says ‘modality’,
he actually means ‘sequence”’. This is a long-standing source of confusion between the technical
and clinical sides of medical imaging. In keeping with my more technical background, I use
“modality” throughout this thesis. This conforms with datasets such as BRATS, a “multi-modal”
brain tumor segmentation dataset that only includes multi-sequence MRI.
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For technical studies of domain adaptation algorithms, like this thesis, cross-
modality image analysis is a useful proxy for other domain adaptation tasks.
While slightly less realistic, the multi-modal tasks can be more challenging
and the available data enables an in-depth analysis of the results.

6.4.2 Generalizing to other, larger models

Over the last few years, improvements in GPU hardware and an increased
availability of data made it possible to use larger and larger machine learning
models. In comparison with contemporary models, the ones in this thesis are
smaller than usual: they have fewer layers, fewer parameters, and sometimes
work on small patches instead of full images. Using smaller models makes
the experiments more efficient, and allows for more extensive comparisons
of hyperparameters and architectures. We expect that the behaviour of the
representation learning and domain adaptations will be comparable. Discrim-
inative learning may improve performance (Chapter 2), modality synthesis
may have unexpected effects (Chapter 3), modality-invariant features improve
cross-domain performance (Chapter 4), and unpaired, unsupervised domain
adaptation is most likely still not guaranteed (Chapter 5).

6.5 Is medical image analysis just computer vision?

Computer vision is a great inspiration for medical image analysis, and many
techniques, including those in this thesis, were developed for natural images
before being applied to X-ray, CT, or MRI. Much of this success can be linked
to representation learning: a method that learns its own features from the
data is much easier to transfer than a method that requires hand-made feature
descriptors for each new task.

However, besides the similarities between computer vision and medical
imaging – most importantly, both have images that can be analyzed with
convolutional neural networks – there are also substantial differences. Under-
standing these differences is important to obtain good and reliable results. A
thesis on domain adaptation in medical imaging would be incomplete without
a brief discussion of this even greater transfer learning problem.
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6.5.1 Different data with different characteristics

Many differences between medical and natural images derive from the type
of variation in the data. While natural images can have variable lighting and
perspective, medical images are usually acquired inmore controlled conditions.
Compared with the tigers in the forests of ImageNet, the primates in medical
images are pictured in a much more consistent and standardized way.

This standardization is needed because medical imaging tasks are usually
more subtle than the computer vision equivalents. Finding a tiger in a forest
is difficult, but mainly because of the variety and less because the difference
between tiger and not-tiger is very small. Medical imaging tasks, such as
classifying brain tumors, require more finely tuned thresholds.

Paradoxically, it is the same standardization that makes medical imaging ap-
plications very sensitive to changes in scanners, protocols, modalities, centers,
populations, or one of the many other parameters that affect the appearance
of the images. The robustness that comes natural to computer vision tasks is
much harder to achieve in medical imaging.

The subtlety and sensitivity make medical imaging an excellent target for
domain adaptation, because models that rely on standardized images from a
specific dataset will not directly work on images with different properties.

6.5.2 Adapting methods from computer vision

Methods from computer vision need to be adapted to work on medical images.
While standard approaches may work reasonably well, performance may be
improved by using application-specific preprocessing and architectures.

For preprocessing, it is important to preserve the image characteristics
such as scale and intensity. While natural images may contain objects at many
different orientations and scales, medical images often have a known pixel or
voxel size. Instead of using the common computer vision approach to squash
all images to a fixed size – such as 256×256 pixels for ImageNet – preserving the
resolution can make it easier to analyze medical images: rather than learning
to detect anatomical structures at many different scales, the model can focus
on one specific scale. This is also useful if absolute measurements provide
discriminative information, such as brain atrophy in Alzheimer classification.
In some cases, it may also help to register images to a fixed reference space.
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Similarly, intensity information in medical images may be more standard-
ized than in natural images, which may have to deal with lighting, shadows,
white balance et cetera. For medical applications, using very aggressive nor-
malization methods can remove discriminative intensity information. In some
cases, using preset windowing settings directly from the DICOM headers
might already provide sufficient standardization.

Medical imaging and computer vision might also benefit from slightly
different network architectures. Much of the capacity in large computer vision
networks such as ResNet or DenseNet is used to handle the variation in the
data, which can only be modelled with a large number of parameters, and
large training sets. In comparison, medical image analysis receives smaller
sets of standardized images and relies on finely tuned thresholds, which may
be easier to learn with a smaller network with fewer parameters.

6.5.3 Pretraining on ImageNet

One of the more intriguing aspects of medical deep learning is the use of
pretrained features from ImageNet and other computer vision datasets. This
has proven to be a very effective way to initialize the weights of CNNs, often
outperforming models trained from scratch.

The reusability of pretrained weights is usually explained with the obser-
vation that early layers in a CNN learn generic, Gaussian-filter-like feature
descriptors, which can be reused for other tasks and images (see also our
feature learning experiments in Chapter 2). Since ImageNet is much larger
than most medical datasets, it is easier to learn a good set of features.

However, pretraining a medical imaging model on natural images is coun-
terintuitive. It involves a clumsy conversion of grayscale medical images to
pseudo-RGB, even though the pretrained color features will be useless. More-
over, medical images do not look like natural images. It would seem better to
pretrain models on medical datasets instead.

Although many works use pretrained weights (in fact, a search for “transfer
learning” in medical imaging lists many papers that do just that), there has
been less research into the idea itself. There are some interesting findings.
For example, Raghu et al. [128] observed that for some problems, simple,
lightweight models trained from scratch can have similar performance to large
networks with ImageNet pretraining.
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Pretraining on medical images may yield different features than pretraining
on natural images. For example, natural images may have stronger edges than
most medical images. Wen et al. [129] suggest that pretraining on medical
images may be more effective for classification than for segmentation, since
medical images are visually homogeneous and lackmorphological information.
Along similar lines, but with opposing conclusions, Hosseinzadeh Taher et
al. [130] report that segmentation and classification tasks may benefit from
pretraining with different natural imaging datasets, depending on their need
for global or more fine-grained features. Earlier, Schlegl, Ofner, and Langs
[131] found that pretraining on a computer vision dataset performed better
than pretraining on data from a different medical imaging domain.

For obvious reasons, reusing features from ImageNet is not common for 3D
networks. Chen, Ma, and Zheng [132] provide some models for 3D medical
image analysis, pretrained on public challenge data. Alternatively, models can
be pretrained with self-supervised learning (e.g., Taleb et al. [133]).

6.5.4 Technical challenges

From a technical perspective, there are a few important differences between
medical imaging and general computer vision. While many computer vision
datasets include a large number of relatively small images, most medical imag-
ing datasets consist of a smaller number of large images. This has practical
consequences, especially for images with a high resolution, such as histopathol-
ogy slides, or images with a high number of dimensions, such as 3D or 3D+t
MRI. Large images can be difficult to fit in the GPU memory, requiring smaller
minibatch sizes, smaller models, or patch-based training.

6.5.5 Methodological challenges

From a methodological perspective, medical imaging also provides several
unique challenges. First, medical imaging solves different tasks, with a stronger
focus on segmentation, detection, and quantification than in general computer
vision. This requires different network architectures and training procedures,
such as U-Net and multi-task learning. Second, the availability of smaller
datasets requires techniques such as data augmentation, domain adaptation,
and semi-supervised learning. Third, some applications may pose specific
problems, such as detection tasks that look for small structures in large images,
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which may require attention-based methods. Fourth, the medical context may
pose questions about reliability, uncertainty prediction, explainability, fairness,
privacy, and data sharing.

6.6 Looking forward

At the end of this thesis, there are a few questions left.

6.6.1 Is domain adaptation still useful if you have a lot of data?

Medical imaging datasets have traditionally been small, but the availability of
data is rapidly increasing. Perhaps encouraged by the success of deep learning,
more and more data is collected within hospitals to facilitate medical imaging
research. Some of this data is also shared in standardized ways, in projects
such as ADNI2 and the Osteoarthritis Initiative (OAI [2], Chapter 4). In the
Netherlands, initiatives such as Health-RI3 and BBMRI4 aim to improve data
sharing among hospitals, and similar projects have started elsewhere.

This influx of data is useful for domain adaptation research, but it might also
reduce the need for it. While there is still variation between scans fromdifferent
scanners or hospitals, networks that are trained on large and heterogeneous
datasets can model this variation without additional changes.

On the other hand, since large datasets are usually created by combining
smaller datasets frommultiple centers, the data might include unwanted biases.
For example, if populations in different hospitals have different characteristics,
the prediction outcomes might become correlated with properties such as
scanner models and image quality. Domain adaptation methods may be used
to remove these biases from the data.

Finally, semi-supervised domain adaptation methods may be useful if the
new data is partially unlabelled. Since it is generally easier to collect im-
ages than to produce annotations, not all new datasets may have the correct
application-specific labels. Semi-supervised methods could learn from all
available data by combining discriminative learning for the labelled samples
with unsupervised domain adaptation for the unlabelled target samples.

2. http://adni.loni.usc.edu/
3. https://www.health-ri.nl/
4. https://www.bbmri.nl/
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6.6.2 How do we know if domain adaptation was successful?

Domain adaptation can sometimes produce unexpected and unwanted results
(Chapter 5 and Section 6.3.3), but these problems may be difficult to detect.
Comparing the performance on a validation set with ground-truth labels is
not sufficient: a low classification accuracy on the target domain could be due
to general mistakes in the classifier, but it could also point to more harmful,
biased errors. Segmentations are easier to check, but may also include hidden
biases that are difficult to identify with a visual inspection alone.

More advanced methods are needed to evaluate and improve the reliability
of domain adaptation. We suggested some metrics in Chapter 5, but these
require detailed knowledge about the target data. Practical applications would
require methods that require less detailed knowledge, but still give insights
in the domain adaptation process. These methods could also be useful to
monitor the performance of algorithms after development, as a form of “quality
assurance” to maintain the performance of models in clinical use.

6.6.3 Should domain adaptation use more prior knowledge?

Domain adversarial learning and the other representation-based methods
studied in this thesis make few assumptions about the differences between the
domains. While this can be very effective, it may also be useful to consider a
more principled approach. In many medical imaging applications, the rela-
tion between domains is not completely random: for example, MRI scanners
all work in similar ways, and the differences between them are limited and
have a physical explanation. This prior knowledge could be used in a more
model-based domain adaptation approach, by limiting the optimization to
transformations that are physically likely.

Prior knowledge can also be included in the learning process as regulariza-
tion, through explicit constraints or in additional learning tasks. In medical
imaging, these constraints can be based on knowledge about anatomical struc-
tures, intensity information, or other known domain invariances. Instead
of relying on the model to find these similarities automatically, they may be
included in the learning objective to make the process more predictable. Find-
ing the right invariances and ways to include them in the domain adaptation
procedure is an interesting direction for future research.
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Domain adversarial learning is just one method to learn domain-invariant
representations. It is a general, somewhat undirected way that can be difficult
to train (see, e.g., [134]). There is a large number of alternative approaches
that could be used instead or in combination, with different advantages and
disadvantages (e.g., [135, 136]).

6.6.4 How does this work in clinical practice?

Despite the broad range of research on domain adaptation for medical imaging
[84] and the promise to reduce labelling cost while improving performance, it
is hard to find reports on implementations in clinical practice. Like this thesis,
most works present experiments on public and proprietary research datasets.

This may have several reasons. Developers and users of clinical software
may prefer models that work everywhere, i.e., models that are generalizable,
over models that need to be adapted to each new use case. As is clear from this
thesis and other work on this topic, domain adaptation is far from trivial. It
requires training data from the target domain, it requires retraining of complex
deep learning models, and it may require technical expertise to inspect and
validate the results. Even then, there is a real risk that it will not end well.

Perhaps the most likely use case for domain adaptation are large epidemi-
ological studies. Although studies like ADNI or the Rotterdam Study use
carefully designed protocols to make images as similar as possible, there will
still be differences between images acquired in different centers, using different
scanners, or using upgraded protocols. For these large datasets in a research
context, domain adaptation is both useful and feasible (see, e.g., [137]).

For application in software for clinical practice, the models will need to
adapt to target data based on feedback from clinical users, preferably with-
out interference from a machine learning expert. It may be interesting to
investigate methods such as online learning and reinforcement learning to
do this without retraining the original model completely. Models that adapt
gradually to new inputs are computationally attractive, but may also produce
more predictable and reliable results.

From a regulatory perspective, the adaptability of domain adaptation mod-
els may be a disadvantage. Regulatory approval is a relatively static process: a
model is validated, approved, and then applied in clinical practice. This leaves
little room for a model that continuously updates based on new data.
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6.7 Wrapping up

Domain adaptation is an attractive idea: it allows you to combine data from
multiple sources and train a single prediction model that works for all of them.
This is especially useful for medical imaging, where datasets are small, annota-
tions are time-consuming, and methods are sensitive to the small differences
between inputs from different domains. Domain adaptation can improve
performance and reduce annotation cost.

In this thesis, we used representation learning to map inputs from different
domains to a common feature space, which means that a single classifier or
segmentation model can be used for all domains. Given some labelled or
paired samples from the target domain, this method can give reliable and
useful cross-domain results. With only unpaired and unlabelled samples, the
outcome depends on existing similarities and biases in the data.

Domain adaptation is very popular in medical imaging research, but far less
common in clinical practice. This may be a matter of time – with the growing
reliance on machine learning-based image analysis and the increasing avail-
ability of large but heterogeneous datasets, the big break-through of domain
adaptation might very well be imminent. The findings from this thesis can
help to improve its results.

On the other hand, domain adaptation looks simpler than it is, and there are
several problems that must be solved for each new application: how domain
adaptation should be included in themodel, how flexible the adaptation should
be, which assumptions it shouldmake, and how the results should be evaluated.
This thesis presented answers, but also found new problems. While domain
adaptation improves the generalizability of the models, its own generalizability
leaves something to be desired.
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Machine learning is an essential tool formedical image analysis, but themodels
it creates do not always generalize well to new domains. For example, a model
that works well on data from one type of scanner might work less well on data
from another, because the models are sensitive to subtle differences in the im-
ages. Scanner-specific models may perform better, but training them requires
new labelled training data for each domain, which may be time-consuming
and expensive to obtain. In these cases, domain adaptation methods may help
to transfer knowledge between domains.

This thesis explores domain adaptation using deep learning, by learning
shared representations that are similar across domains. Using these shared
representations, data from different domains can be combined and analysed
with a single model. This may reduce labelling cost when applying existing
models to data from new sources, but may also improve performance on
datasets that combine data from multiple sources.

Chapter 2 investigates representation learning for lung tissue classification,
using restricted Boltzmann machines (RBMs) to learn high-level represen-
tations that can be used as input for a classification model. The standard
unsupervised learning objective can be extended with a supervised, discrimi-
native learning objective, which helps the model to extract features that are
useful for classification. We evaluate this model on two tasks in lung CT im-
ages: airway detection and tissue classification for interstitial lung disease. We
compare the RBM-learned features with predefined feature banks, finding that
RBM-learned features can outperform the predefined features, especially if
the RBM is trained with a hybrid generative-discriminative learning objective.

Chapter 3 investigates RBMs and feed-forward neural networks for cross-
modality image synthesis, as a method to impute missing modalities in a
multi-modality classification setting. After training networks to reconstruct
different modalities from a shared representation, we impute missing MRI
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sequences in a brain tumor segmentation task. The design of the RBMs makes
a single model sufficient for all cross-modality combinations, while the feed-
forward networks require a separate synthesis model for each input-output
combination. We compare the reconstructed images in classification experi-
ments with linear support vector machines (SVMs) and random forests. Image
synthesis improves the results if some images are missing at test time. We
observe the largest improvement for the linear SVMs, with a smaller improve-
ment for the random forests, which suggests that the nonlinear nature of the
synthesis models might also contribute to the improved performance.

Chapter 4 learns cross-modality representations from multi-modal images,
using autoencoder-like architectures to learn a shared representation for all
modalities, which is then used as input for a cross-modal classification model.
We compare four strategies to improve the quality of these cross-modal repre-
sentations: cross-modal reconstruction, an explicit similarity loss, per-feature
normalization, and modality dropout. We investigate whether these methods
learn modality-specific or shared features. In experiments with knee cartilage
and brain tumor segmentation, both on multi-modal MRI data, we find that a
combination of all methods produces the best cross-modal features.

Chapter 5 investigates the possibilities and limitations of unsupervised,
unpaired domain adaptation. While this approach is very flexible and requires
no labelled data from the target domain, it is also likely to produce incorrect
results. We explore the problems that may occur, and discuss whether existing
similarities between domains may bias the model towards the correct solution.
We present four assumptions that often hold for medical images, such as the
assumption that images from two domains have a similar spatial structure or a
similar intensity distribution. We conclude that while unsupervised, unpaired
domain adaptation makes few explicit assumptions, these implicit biases may
have a strong influence on the results.

Chapter 6 discusses the different perspectives on cross-modality medical
image analysis and domain adaptation that are presented in this thesis. We
compare the assumptions and choices that can be made, and discuss how they
are reflected in the methods. We discuss the main limitations of the work, and
look at the similarities and differences between computer vision and medical
imaging. We end with a number of open questions about the methodological
and clinical aspects of domain adaptation in medical image analysis.
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Machine learning is in de afgelopen jaren een essentieel hulpmiddel geworden
voor medische beeldanalyse. Door verbeterde methodes, snellere hardware
en een toegenomen beschikbaarheid van medische beelden is het mogelijk
geworden om steeds complexere modellen te gebruiken voor een breed scala
aan classificatie- en segmentatietaken. Automatische beeldanalyse bespaart
tijd en is soms ook beter dan handmatige annotatie door menselijke experts,
bijvoorbeeld op punten als precisie, objectiviteit en reproduceerbaarheid.

Machine learning-methodes leren van voorbeelden. In medische beeldverwer-
king zijn dit vaak scans die zijn geannoteerd door radiologen, bijvoorbeeld
met een label voor de aanwezigheid van een bepaalde ziekte, of met een seg-
mentatiemasker dat de locatie en contouren van een anatomische structuur
aangeeft. Soms worden ook andere bronnen gebruikt, zoals resultaten van
histopathologisch onderzoek of klinische gegevens over het ziekteverloop.

De gelabelde voorbeelden worden gebruikt om een model te trainen dat de
labels kan voorspellen voor nieuwe beelden, bijvoorbeeld van nieuwe patiënten
voor wie nog geen handmatig label beschikbaar is. Het model doet deze
voorspellingen door te kijken naar kenmerken en patronen in de beelden, zoals
de pixel-intensiteit of textuur. Op basis van de gelabelde voorbeelden leert het
model welke kenmerken en patronen belangrijk zijn en wat ze betekenen.

De modellen die op deze manier worden getraind geven meestal goede
resultaten voor scans die lijken op de voorbeelden waarmee ze zijn getraind,
maar ze werken somsminder goed voor nieuwe data, zoals scans van een ander
merk of type scanner. Doordat de modellen zijn getraind op een specifieke
set voorbeelden, leren ze welke kenmerken voor dat type data belangrijk zijn.
Dat werkt goed als de nieuwe scans lijken op de oorspronkelijke voorbeelden,
maar zorgt voor problemen als de nieuwe scans er anders uitzien – bijvoor-
beeld omdat ze zijn gemaakt met een ander model scanner, met iets andere
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instellingen, of in een ander ziekenhuis. Als het model kijkt naar kenmerken
die in de nieuwe scans ontbreken, of die daar een andere betekenis hebben,
zal het model voor die nieuwe data minder goed werken.

Dit probleem heet domain shift: een model dat is getraind op data van één
domein (het brondomein, bijvoorbeeld scanner A) moet worden toegepast
op data van een ander domein (het doeldomein, bijvoorbeeld scanner B)
waarin de scans er anders uitzien. Figuur 1 toont hiervan twee voorbeelden:
MRI-scans van dezelfde patiënt die zijn gemaakt met verschillende scanner-
instellingen zien er duidelijk verschillend uit. Door deze verschillen kan het
zijn dat een model dat is getraind voor één soort scans niet automatisch even
goed werkt voor scans van de andere soorten.

Domain shift is een veelvoorkomend probleem in medische beeldverwer-
king, omdat het tijdrovend, duur of onpraktisch kan zijn om voor ieder nieuw
domein nieuwe data te verzamelen en annoteren. Bij medisch onderzoek
is het vaak noodzakelijk om datasets opnieuw te gebruiken of om data van
verschillende bronnen te combineren om zo een voldoende grote dataset te
krijgen. Ook voor klinische toepassingen, bijvoorbeeld voor bedrijven die
medische software ontwikkelen, is het handig als hetzelfde model kan worden
gebruikt voor beelden van verschillende scanners, gemaakt met verschillende
instellingen of in verschillende ziekenhuizen.

Domain shift kan worden bestreden met domain adaptation, een groep
machine learning-methodes die een model dat is getraind op data van één
domein kunnen aanpassen zodat het goed werkt voor data van een ander
domein. Dit kan op grofweg twee manieren: door één model te maken dat
ongevoelig is voor de verschillen tussen de domeinen, en daardoor goed werkt
voor beide domeinen; of door een nieuw, domein-specifiek model te maken
dat is afgeleid van het oorspronkelijke model, maar speciaal is afgestemd op
de eigenschappen van het doeldomein.

In dit proefschrift combineren we domain adaptation met deep learning, een
populaire techniek die wordt gebruikt in de meeste huidige medische beeldver-
werkingsmodellen. Deep learning is gebaseerd op representation learning, een
methode waarbij een neuraal netwerk met meerdere lagen wordt gebruikt om
nieuwe, abstracte representaties van de data te leren. Voor afbeeldingen, zoals
medische scans, zijn dit meestal convolutionele neurale netwerken (CNNs).
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T1 Contrastversterkte T1 (T1+c)

T2 FLAIR

(a) BRATS [1] – hersentumor.

Normaal

Vetonderdrukt

(b)OAI [2] – knie.

Figuur 1: Hoe een MRI-scan eruitziet hangt onder andere af van de instellingen van de
scanner. Links: vier scans van dezelfde hersentumor, gemaakt met verschil-
lende MRI-sequenties. Rechts: twee verschillende scans van dezelfde knie,
gemaakt voor kraakbeensegmentatie (groene contouren). Een model dat is
getraind op één type beeld (zoals T1+c) werkt waarschijnlijk minder goed
voor een ander type (zoals FLAIR), omdat sommige kenmerken daar ontbre-
ken of een verschillende betekenis hebben. (Illustratie uit Hoofdstuk 4.)

Zoals ieder deep learning-model bestaat een CNN uit een aantal lagen
waarin de invoer stap voor stap wordt ontleed. De eerste laag herkent basale
patronen, zoals lijnen en hoeken. Dit levert een tussenliggende representatie
op die beschrijft waar in het beeld welk patroon voorkomt. De tweede laag
combineert de eenvoudige patronen tot iets ingewikkelder patronen, zoals
simpele vormen en structuren, en produceert een nieuwe representatie die de
scan op een iets abstracter niveau beschrijft. De volgende lagen in het netwerk
leren steeds complexere, abstractere representaties, tot aan de laatste laag die
zo abstract is dat daarmee het label of de segmentatie kan worden voorspeld.
Welke patronen belangrijk zijn en hoe ze moeten worden gecombineerd tot
nuttige nieuwe representaties, leert het model van de gelabelde voorbeelden.
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Representation learning biedt de ideale mogelijkheid voor domain adapta-
tion: als je toch een nieuwe representatie van de data leert, dan kun je net
zo goed een representatie leren die beelden uit verschillende domeinen een
vergelijkbare representatie geeft. Als de beelden van verschillende domeinen
op dezelfde manier kunnen worden gerepresenteerd, kunnen ze vervolgens
door één gemeenschappelijk model worden beoordeeld.

Er zijn twee manieren om domain adaptation toe te voegen aan een neuraal
netwerk. De eerste aanpak gebruikt een gemeenschappelijke encoder: een
aantal gemeenschappelijke lagen aan het begin van het netwerk, die beelden
van alle domeinen op dezelfde manier omzetten naar een gemeenschappelijke
representatie. Dit werkt het best als de domeinen al redelijk op elkaar lijken.
De tweede aanpak gebruikt voor ieder domein een aparte encoder: voor ieder
domein zijn de eerste lagen van het netwerk verschillend, zodat de beelden
op een domein-specifieke manier kunnen worden behandeld. Deze aanpak
is heel flexibel, omdat voor ieder domein de beste transformatie kan worden
gebruikt, maar is meestal ook lastiger te leren.

Domain adaptation-methodes hebben informatie nodig over de verschil-
len en overeenkomsten tussen de domeinen. Sommige methodes hebben
genoeg aan voorbeelden uit het brondomein, en maken wat aannames over de
verschillen met het doeldomein. De meeste methodes gebruiken echter ook
voorbeelden van het doeldomein. Dit kunnen gepaarde voorbeelden zijn, zoals
scans van dezelfde patiënt in verschillende scanners. Gepaarde scans geven
heel veel informatie over de verbanden tussen de domeinen, maar zijn vaak
moeilijk te krijgen. Sommige methodes gebruiken daarom ongepaarde maar
gelabelde voorbeelden uit het doeldomein. Deze zijn eenvoudiger te vinden,
maar bieden minder aanknopingspunten om de domeinen te combineren.
Ten slotte zijn er methodes die alleen ongepaarde, ongelabelde voorbeelden
uit het doeldomein gebruiken: die voorbeelden zijn het makkelijkst te krijgen,
maar bieden nog minder informatie.

Een model voor domain adaptation heeft twee taken: de hoofdtaak, zo-
als het classificeren of segmenteren van nieuwe scans, en het leren van een
gemeenschappelijke representatie. De hoofdtaak kan worden geleerd met
een standaard supervised learning objective, op basis van gelabelde data van
het brondomein. De gemeenschappelijke representatie kan worden geleerd
met een extra domain adaptation objective, dat samen met de hoofdtaak
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wordt geoptimaliseerd. Veelvoorkomende keuzes voor dit extra objective zijn
representation similarity, waarbij het representatieverschil tussen gepaarde
voorbeelden in beide domeinen zo klein mogelijk wordt gemaakt, en feature
distribution similarity, waarvoor geen gepaarde data nodig is, maar waarbij een
methode zoals domain adversarial learning wordt gebruikt om de verdeling
van de representaties voor beide domeinen gelijk te maken.

In dit proefschrift onderzoeken we de combinatie van domain adaptation en
deep learning, waarbij een gemeenschappelijke representatie word geleerd voor
verschillende domeinen. Op basis van deze gemeenschappelijke representatie
kan data van verschillende domeinen worden gecombineerd en door één
model worden geanalyseerd. Dit is efficiënter omdat er minder labels nodig
zijn om bestaande modellen aan te passen voor nieuwe data, en kan daarnaast
worden gebruikt om data van verschillende bronnen te combineren.

Hoofdstuk 2 onderzoekt representation learning voor longweefselclassifi-
catie, waarbij restricted Boltzmann machines (RBMs) worden gebruikt om
representaties te leren als input voor een classificatiemodel. Het standaard
unsupervised learning objective van de RBMs kan worden uitgebreid met een
supervised, discriminative objective, dat het model helpt om representaties
te leren die nuttig zijn voor een classificatiemodel. We evalueren dit model
voor twee taken met CT-longscans: detectie van luchtwegen en weefselclassifi-
catie voor interstitiële longziekten. We vergelijken de features geleerd door
de RBM met vooraf gedefinieerde features uit standaard feature banks. RBM-
geleerde features blijken beter te presteren dan vooraf gedefinieerde features,
in het bijzonder als de RBM is getraind met een hybride learning objective dat
generatief en discriminatief leren combineert.

Hoofdstuk 3 onderzoekt RBMs en feed-forward neurale netwerken voor
beeldsynthese bij het herkennen van hersentumoren. Bij de diagnose van her-
sentumoren worden verschillendeMRI-beelden vergeleken (Figuur 1), maar in
de praktijk kunnen sommige beelden ontbreken. Om de ontbrekende beelden
aan te vullen maken we modellen die beelden kunnen vertalen: we trainen
modellen die de verschillende types vertalen naar één gemeenschappelijke
representatie, en modellen die die representatie weer terugvertalen naar de ver-
schillende types. We evalueren de synthetische beelden in experimenten met
lineaire support vector machines (SVMs) en random forests. Beeldsynthese
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verbetert de resultaten als het model moet worden toegepast op incomplete
data waarin sommige modaliteiten ontbreken. We zien daarbij de grootste
verbetering voor de lineaire SVMs en een kleinere verbetering voor de random
forests, wat suggereert dat ook de niet-lineaire aard van het synthesemodel
zou kunnen bijdragen aan de verbeterde classificatie.

Hoofdstuk 4 leert gemeenschappelijke representaties voor verschillende
verschillende soorten MRI-scans. We gebruiken autoencoder-achtige archi-
tecturen om een gemeenschappelijke representatie te leren en gebruiken die
vervolgens voor een classificatiemodel. We vergelijken vier strategieën om
de kwaliteit van deze representaties te verbeteren: door de representatie te-
rug te vertalen naar de verschillende beelden, door een expliciete similarity
loss, door normalisatie van individuele features, en door modality dropout.
We onderzoeken of deze methodes domein-specifieke of gemeenschappelijke
features leren. In segmentatie-experimenten met kniekraakbeen en herstentu-
moren, beide op multi-modale MRI-scans, zien we dat een combinatie van
alle methodes de beste gemeenschappelijke features oplevert.

Hoofdstuk 5 onderzoekt de mogelijkheden en beperkingen van unsuper-
vised, unpaired domain adaptation. Hoewel deze aanpak zeer flexibel is en
geen gelabelde data van het doeldomein vereist, is er ook een grote kans op
onjuiste resultaten. We onderzoeken welke problemen zich kunnen voordoen
en of overeenkomsten tussen de domeinen het model een voorkeur voor een
bepaalde oplossing zouden kunnen geven. We bespreken vier aannames die
vaak gelden voor medische afbeeldingen, zoals de aanname dat beelden uit ver-
schillende domeinen een vergelijkbare spatiële structuur of een vergelijkbare
intensiteitsverdeling hebben. We concluderen dat unsupervised, unpaired
domain adaptation weliswaar weinig explicite aannames maakt, maar dat de
overeenkomsten tussen domeinen toch een sterke invloed kunnen hebben.

Hoofdstuk 6 bespreekt de verschillende perspectieven op domain adapta-
tion in medische beeldverwerking, zoals die in dit proefschrift worden gepre-
senteerd. We vergelijken de aannames en keuzes die kunnen worden gemaakt,
bespreken hoe deze tot uiting komen in de methodes, en bespreken de belang-
rijkste beperkingen. We kijken ook naar de verschillen en overeenkomsten
tussen algemene computer vision en medische beeldverwerking. We besluiten
met een aantal open vragen over de methodologische en klinische aspecten
van domain adaptation in medische beeldverwerking.
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