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Combining Generative and Discriminative
Representation Learning for Lung CT Analysis with

Convolutional Restricted Boltzmann Machines
Gijs van Tulder and Marleen de Bruijne

Abstract—The choice of features greatly influences the per-
formance of a tissue classification system. Despite this, many
systems are built with standard, predefined filter banks that
are not optimized for that particular application. Representation
learning methods such as restricted Boltzmann machines may
outperform these standard filter banks because they learn a
feature description directly from the training data. Like many
other representation learning methods, restricted Boltzmann
machines are unsupervised and are trained with a generative
learning objective; this allows them to learn representations
from unlabeled data, but does not necessarily produce features
that are optimal for classification. In this paper we propose the
convolutional classification restricted Boltzmann machine, which
combines a generative and a discriminative learning objective.
This allows it to learn filters that are good both for describing
the training data and for classification. We present experiments
with feature learning for lung texture classification and airway
detection in CT images. In both applications, a combination
of learning objectives outperformed purely discriminative or
generative learning, increasing, for instance, the lung tissue
classification accuracy by 1 to 8 percentage points. This shows
that discriminative learning can help an otherwise unsupervised
feature learner to learn filters that are optimized for classification.

Index Terms—Representation learning, Restricted Boltzmann
machine, Deep learning, Machine learning, Segmentation, Pattern
recognition and classification, Neural network, Lung, X-ray
imaging and computed tomography.

I. INTRODUCTION

Most methods for automated image classification do not
work directly with image data, but first extract a higher-
level description of useful features from the image. The
choice of features determines a large part of the classification
performance. Which features work well depends on the nature
of the classification problem: for example, some problems
require features that preserve and extract scale differences,
whereas other problems require features that are invariant to
those properties. Often, feature representations are based on
standard filter banks of common feature descriptors, such as
Gaussian derivatives that detect edges in the image. These

Copyright c⃝ 2016 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This research is financed by the Netherlands Organization for Scientific
Research (NWO).

G. van Tulder and M. de Bruijne are with the Biomedical Imaging Group,
Erasmus MC, Rotterdam, The Netherlands. M. de Bruijne is also with the
Department of Computer Science, University of Copenhagen, Denmark.

Code used for the experiments is available as supplementary material and
at http://vantulder.net/code/2016/tmi-ccrbm/.

predefined filter banks are not specifically optimized for a
particular problem or dataset.

As an alternative to such predefined feature sets, represen-
tation learning or feature learning methods [1] learn a high-
level representation directly from the training data. Because
this representation is learned from the training data, it can be
optimized to give a better description of the data. Using this
learned representation as the input for a classification system
might give a better classification performance than using a
generic set of features.

Most feature learning methods use unsupervised models
that are trained with unlabeled data. While this can be an
advantage because it makes it easier to create a large training
set, it can also lead to suboptimal results for classification,
because the features that these methods learn are not nec-
essarily useful to discriminate between classes. Unsupervised
feature learning tends to learn features that model the strongest
variations in the data, while classifiers need features that
discriminate between classes. If the variation between samples
from the same class is much stronger than the variation
between classes, feature learning probably produces features
that capture primarily within-class variation. If those features
do not represent enough between-class variation, they might
give a lower classification performance.

This issue of within-class variation is relevant for many
applications, including medical image analysis. For example,
in disease classification, the differences between patients are
often greater than the subtle differences between disease pat-
terns. As a result, representation learners might learn features
that model these between-patient differences, rather than those
that improve classification.

In this paper we study the restricted Boltzmann machine
(RBM), a popular representation learning model, as a way
to learn features that are optimized for classification. The
standard RBM does not include labels and is trained with an
unsupervised, generative learning objective. The classification
RBM [2], an extension of the standard RBM, does include
label information and can also be trained with a discriminative
learning objective. This discriminative learning objective opti-
mizes the classification performance of the classification RBM.
The generative and discriminative objectives can be combined
to learn discriminative features that represent the data and are
useful for classification.

We propose the convolutional classification RBM, which
combines the classification RBM with the convolutional RBM,
another extension of the standard RBM. The convolutional
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RBM [3]–[6] uses the convolutional weight-sharing pattern
from convolutional networks to learn small filters that are
applied to every position in a larger image. This weight sharing
makes learning more efficient and allows the RBM to model
small features that occur in multiple areas of an image, which
is useful for describing textures.

The ability to use both generative and discriminative learn-
ing objectives distinguishes the classification RBM from many
other representation learning methods. Unsupervised models
such as the standard RBM are usually trained with only a
generative learning objective. Supervised representation learn-
ing methods, such as convolutional neural networks [7], are
usually trained with only a discriminative learning objective.
The classification RBM can be trained with a generative
objective, a discriminative objective, or a combination.

We present experiments on lung tissue classification and
airway detection. For the lung tissue classification experiments
we used a dataset on interstitial lung diseases (ILD) [8]
with CT images of 73 patients. Previously published tissue-
classification experiments on this dataset used wavelets [9]–
[12], local binary patterns [13], [14], bag-of-visual-words [15],
[16], filter banks derived from the discrete Fourier transform
[17], RBMs [18], [19] and convolutional networks [20].

We used RBMs to learn features for lung tissue classifica-
tion. From the images, we first extracted 2D patches that we
used to train RBMs with different mixtures of discriminative
and generative learning. Using the RBM-learned representa-
tions, we trained and evaluated classifiers that classify each
patch in one of the five tissue classes. We compared those
results with those of two standard filter banks.

We expected the effect of discriminative learning to become
less important for larger representations (more hidden nodes
in the RBM), because larger representations are more likely to
contain sufficient discriminative features even without explicit
discriminative learning. To study this effect, we performed
airway detection experiments on lung CT images from the
Danish Lung Cancer Screening Trial (DLCST) [21]. We used
non-convolutional classification RBMs with different mixtures
of discriminative and generative learning to learn features
for this dataset. The non-convolutional RBMs allowed us to
experiment with larger numbers of hidden nodes.

This paper extends our earlier workshop paper [22] in which
we introduced the convolutional classification RBM and found
that using a mixture of generative and discriminative learning
objectives can produce features that improve classification
results. In this paper, we present the results of more extensive
experiments that confirm these preliminary conclusions.

The rest of this paper is organized as follows. Section II
gives a brief overview of other relevant representation learning
approaches. Section III describes the RBM and its learning
algorithm. Section IV introduces the datasets and the ex-
periments. Section V describes the results. We end with a
discussion and conclusion.

II. RELATED WORK

Representation learning methods have been used for tissue
classification in lung CT before. In experiments similar to

those presented in this paper and using the same ILD dataset,
Li et al. [18] used RBMs to extract features. Whereas we use
classification RBMs with convolution to learn small filters,
Li et al. trained standard (non-convolutional) RBMs on small
subpatches extracted from the patch that is to be classified. In
later work [19] on the same dataset, Li et al. reported that con-
volutional neural networks gave a slightly better performance
than standard RBMs. Gao et al. [20] used convolutional neural
networks to classify full slices from the ILD dataset, without
requiring manually annotated ROIs. Schlegl et al. [23] also
used convolutional neural networks to classify lung tissue in
a different lung CT dataset.

Convolutional neural networks have also been used in other
applications of lung CT, such as the detection of lung nodules
and lymph nodes. In an early application of convolutional neu-
ral networks, Lo et al. [24], [25] trained a network to reject or
confirm potential lung nodules selected in a preprocessing step.
More recently, Shen et al. [26] used multi-scale convolutional
networks to compute features for lung nodule classification.
Kumar et al. [27] used multi-layer autoencoders to extract
features for the classification of lung nodules. Roth et al. [28]
proposed a so-called 2.5D convolutional neural network that
samples multiple 2D orthogonal views to detect lymph nodes
in lung CT images.

To our knowledge, classification RBMs have not been
applied to lung CT images before, and there are only a
few applications in other types of medical image analysis.
Shin et al. [29] used classification RBMs to detect micro-
calcifications in digitized mammograms. Berry and Fasel [30]
used translational deep Boltzmann machines, which are related
to classification RBMs, to analyze ultrasound images of the
tongue. Schmah et al. [31] analyzed fMRI data with RBMs
with generative and discriminative learning.

III. RESTRICTED BOLTZMANN MACHINES

A. Standard RBM

The restricted Boltzmann machine is a probabilistic neural
network that learns the probability distribution of its inputs v
and a hidden representation h. The visible nodes v represent
the voxels of an input patch. To model the patches from our
lung CT images, we use Gaussian visible nodes v and binary
hidden nodes h (see [32] for a description of these node types).
Each visible node vi has an undirected connection with weight
Wij ∈ R to each hidden node hj . The model also includes a
bias bi ∈ R for each visible node vi and a bias cj ∈ R for
each hidden node hj . Together, the weights and biases define
the energy function of the RBM:

E (v,h) =
∑
j

(vi − bi)
2

2σ2
i

−
∑
i, j

vi
σi

Wijhj −
∑
j

cjhj , (1)

where σi is the standard deviation of the Gaussian noise of
visible node i. We normalize the training patches such that
σi = 1. The joint distribution of the input v and hidden
representation h is defined as

P (v,h) =
exp (−E (v,h))

Z
, (2)
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Fig. 1. Schematic view of the classification RBM, which adds a set of label
nodes to the visible layer of the standard RBM. The label nodes are connected
to the input nodes through the hidden layer.

where Z is a normalization constant. The conditional proba-
bilities for the hidden nodes given the visible nodes and vice
versa are

P (hj |v ) = sigm(
∑
i

Wijvi + cj) and (3)

P (vi |h ) = N (vi |
∑
j

Wijhj + bi, σ2
i ), (4)

where sigm (x) = 1
1+exp(−x) is the logistic sigmoid function

and N
(
x
∣∣µ, σ2

)
is a Gaussian probability density function

with mean µ and variance σ2, evaluated at x.

B. Classification RBM

The standard RBM is an unsupervised model. The classi-
fication RBM [2] extends the standard RBM by adding a set
of label nodes to the visible layer (Figure 1). This allows the
RBM to learn the joint probability of the input, the hidden
representation, and the label. The label nodes use a one-hot
coding, where there is one node yk per class such that yk = 1
if the sample belongs to class k and yk = 0 otherwise. The
label nodes have a bias dk ∈ R and are connected to the
hidden nodes, with a connection with weight Ukj ∈ R between
label node yk and hidden node hj . The energy function of a
classification RBM with Gaussian visible nodes is

E (v,h,y) =
∑
j

(vi − bi)
2

2σ2
i

−
∑
i, j

vi
σi

Wijhj −
∑
j

cjhj

−
∑
k, j

ykUkjhj −
∑
k

dkyk . (5)

The energy function defines the distribution

P (v,h,y) =
exp (−E (v,h,y))

Z
(6)

and the conditional probabilities

P (hj |v,y ) = sigm(
∑
i

Wijvi +
∑
k

Ukjyk + cj) and (7)

P (yk |h ) = sigm(
∑
j

Ukjhj + ck). (8)

The visible nodes and the label nodes are not connected, so
the expression for P (vi |h ) is unchanged from the standard

RBM. The posterior probability for classification is

P (y |v ) = (9)

exp
(
dy +

∑
j softplus (cj + Ujy +

∑
i Wijvi)

)
∑

y∗ exp
(
dy∗ +

∑
j softplus (cj + Uy∗j +

∑
i Wijvi)

) ,

where softplus (x) = log (1 + exp (x)). This definition only
works for RBMs with binary hidden nodes: it implicitly sums
over all possible states of the hidden layer, which can be
done efficiently if each hidden node can take one of only two
values [2].

C. Generating samples and classifying with RBMs

RBMs are probabilistic models that define the activation
probability for each node given all other nodes. In practice,
computing the probability of a particular state v,h is impos-
sible, because the normalization constant or partition function
Z in the energy function is infeasible to compute for any but
the smallest models. However, since it is possible to compute
the conditional probabilities, we can still use Gibbs sampling
to sample from the model. Gibbs sampling alternately samples
from the hidden and visible layers. Given the visible and label
nodes, the new state of the hidden nodes can be sampled
using the distribution p (ht |vt, yt ). Then, keeping the hidden
nodes fixed, the new activation of the visible and label nodes
can be sampled from p (vt, yt |ht ). This can be repeated for
several iterations, until the model converges to a stable state.
For simplicity, we used a fixed number of iterations in our
experiments.

Classifying a patch using the classification RBM is more
straightforward. We input the patch values in the visible layer
v and use Equation (9) to compute the posterior probability
P (y |v ) for each class. We assign the label of the class with
the highest posterior probability.

D. Learning objectives

At training time, the weights and biases of the standard
RBM are chosen to optimize the generative learning objective
logP (vt), the probability distribution of each input image t.
The classification RBM can be trained with the generative
learning objective logP (vt, yt), which optimizes the joint
probability distribution of the input image and the label. A
classification RBM can also be trained with the discriminative
objective logP (yt |vt ), which only optimizes the classifica-
tion and does not try to optimize the likelihood of the input
image. Larochelle et al. [2] suggest a hybrid objective

β logP (vt, yt) + (1− β) logP (yt |vt ), (10)

where β ∈ [0, 1] is the proportion of generative learning. We
will use this objective with different values for β in our feature
learning experiments.

The normalization constant or partition function Z makes it
unfeasible to compute the gradient of the generative learning
objective. Instead, we use Gibbs sampling and contrastive
divergence [32] to estimate the stochastic gradient descent
updates for our RBMs. Contrastive divergence provides an
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Fig. 2. Schematic view of the convolutional RBM, which uses a convolutional
weight-sharing arrangement to reduce the number of connection weights.

efficient approximation for the gradient-based updates to the
weights and biases.

Classification RBMs are slightly more computationally ex-
pensive than unsupervised RBMs, because they use an ad-
ditional discriminative learning objective and include extra
weights to connect the label nodes. In practice however, we
find that the classification RBMs are not much slower than the
unsupervised RBMs, because the additional complexity from
the discriminative components is small compared with the
other parts of the RBM. The number of labels and the number
of associated weights is usually much smaller than the number
of connections between the visible and hidden layers, and
the discriminative learning objective can be computed much
faster than the generative objective, which requires contrastive
divergence and Gibbs sampling.

E. Convolutional RBM

Designed to model complete images instead of small
patches, convolutional RBMs [3]–[6] use the weight-sharing
approach from convolutional neural networks. Unlike convo-
lutional neural networks, convolutional RBMs are generative
models and can be trained in the same way as standard RBMs.
In a convolutional RBM, the connections share weights in
a pattern that resembles convolution, with M convolutional
filters Wm that connect hidden nodes arranged in M feature
maps hm (Figure 2). The connections between the visible
nodes and the hidden nodes in map m use the weights
from convolution filter Wm, such that each hidden node is
connected to the visible nodes in its receptive field. The visible
nodes share one bias b; all hidden nodes in map m share
the bias cm. With the convolution operator ∗ we define the
probabilities

P
(
hm
ij |v

)
= sigm

(
(W̃m ∗ v)ij + cm

)
and (11)

P (vij |h ) = N
(
vij

∣∣ (∑
m

Wm ∗ hm

)
ij
+ b, 1

)
, (12)

where W̃m is the horizontally and vertically flipped filter
Wm, and · ij denotes the voxel on location (i, j).

feature maps h1,h2, . . . ,hM

input image v

labels y

W1, . . . ,WM

U

Fig. 3. Schematic view of the convolutional classification RBM. The
connection weights U are shared between all nodes in a feature map.

Convolutional RBMs can produce unwanted border effects
when reconstructing the visible layer, because the visible
nodes near the borders are only connected to a few hidden
nodes. We pad our patches with voxels from neighboring
patches, and keep the padding voxels fixed during the iter-
ations of Gibbs sampling.

F. Convolutional classification RBM

We use the convolutional classification RBM we introduced
in our workshop paper [22]. This RBM includes visible,
hidden and label nodes (Figure 3) and can be trained in a
discriminative way. The visible nodes are connected to the
hidden nodes using convolutional weight-sharing, as in the
convolutional RBM, and the hidden nodes are connected to the
label nodes, as in the classification RBM. In our patch-based
texture classification problem, the exact location of a feature
inside the patch is not relevant, so we use shared weights to
connect the hidden nodes and the label nodes. All connections
from a label node yk to a hidden node hm

ij in map m share
the weight Ukm. The activation probabilities are

P (yk |h ) = sigm
(∑

m

Uym

∑
i,j

hm
ij + dk

)
and (13)

P
(
hm
ij |y

)
= sigm

((
W̃m ∗ v

)
ij
+
∑
k

Ukmyk + cm
)
. (14)

Since the label nodes are not connected to the visible nodes,
the probability for the visible nodes is unchanged from the
convolutional RBM.

IV. EXPERIMENTS

We present experiments on lung CT images for two ap-
plications and datasets: lung tissue classification and airway
centerline detection. On the lung tissue dataset, we studied the
effects of combining generative and discriminative learning
objectives. On the airway dataset, we explored how these
effects change if the representation is larger (more hidden
nodes).
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Fig. 4. First dataset. Example from the interstitial lung disease scans. The
annotation (right) shows an ROI (red) marked as micronodules.

A. Dataset 1: Lung tissue classification

1) Purpose: This set of experiments studied the effect of
combining generative and discriminative learning objectives.
We trained RBMs with purely discriminative (β = 0), with
purely generative (β = 1), and with mixed learning objectives.
We then used the RBM-learned filters to compute feature
vectors and train a classifier. The classification accuracy gives
an indication of the quality of the learned representations.

2) Data: We used a publicly available dataset on interstitial
lung diseases (see [8] for a description). In this texture
classification problem with 73 scans from different patients,
we classify patches of five types of lung tissue. The in-plane
voxel size varies between 0.4− 1 mm, with a slice thickness
of 1 − 2 mm and inter-slice spacing of 10 − 15 mm. The
dataset provides hand-drawn 2D ROIs with labels for a subset
of slices in each scan (Figure 4). Following other work on this
dataset (e.g., [11]), we extracted patches of 32 × 32 voxels
along a grid with a 16-voxel overlap. We include a patch if at
least 75% of the voxels belong to the same class. We classify
patches from the five most common tissue types in the dataset
(healthy tissue: 22%, emphysema: 3%, ground glass: 16%,
fibrosis: 15%, micronodules: 44% of the patches).

3) Experiments: We used the convolutional RBM, with and
without labels, to learn filters from the patches in the lung
tissue dataset. We then used these filters in a convolution to
get feature maps for each of the patches in the dataset. For
each feature map, we computed a histogram of the feature
activations, using adaptive binning [33] over all patches in
the training set. The concatenated histograms form the feature
vector for each patch. We trained random forest classifiers to
classify each patch in one of the five tissue classes.

4) Normalization: We trained the RBMs on normalized
patches, with each patch normalized to zero mean intensity
and unit standard deviation. We used unnormalized patches
to compute the feature maps and histograms, to preserve the
intensity differences between patches.

5) Baselines: We compare the results of the RBMs with
those of several other methods. First, we show the performance
of using random filters, using the same convolutional architec-
ture but without optimizing the filter weights (see Figure 5 for
an example). The results of random filters help to separate the
contribution of feature learning from that of the convolutional

Fig. 5. Two filter banks: Leung-Malik (left) and Schmid (middle), generated
with the code from http://www.robots.ox.ac.uk/∼vgg/research/texclass/filters.
html. An example of random filters (16 filters of 8×8 voxels) is shown right.

architecture [34]. We also compare the RBM-learned filters
with two of the frequently-used standard filter banks discussed
by Varma and Zisserman [35]: the Leung-Malik and Schmid
filter banks (Figure 5). The filter bank of Leung and Malik
[36] is a set of Gaussian filters and derivatives, with 48 filters
of 32×32 voxels. The filter bank of Schmid [37] has 13 filters
of 31× 31 voxels with rotation-invariant Gabor-like patterns.

6) Implementation and parameters: We implemented the
RBMs in Python using the Theano library [38] and used
the random forest implementation from Scikit-learn [39]. To
optimize the learning parameters for the RBMs and random
forests, we performed a grid search using nested cross-
validation with patches from the same scan grouped in the
same fold. We tried various learning rates for the RBM (10−3

to 10−9). For the random filters, we chose the best filter set
out of five random initializations. We used 2 to 8 bins in the
adaptive binning step. For the random forests, we varied the
number of trees (10 to 200) and the maximum number of
features (1 to 256), and used Scikit-learn’s default parameters
for the other settings.

The initial values for the connection weights W of the RBM
were sampled from a normal distribution with mean 0 and
standard deviation 10−6. The initial values for the connection
weights U of the classification RBMs were sampled from
a uniform distribution

[
−10−6, 10−6

]
. All biases had the

initial value 0. During stochastic gradient descent we used
a minibatch size of 5, with one Gibbs sampling step for
contrastive divergence.

7) Cross-validation: Almost all scans have manually-drawn
ROIs for only one tissue type. We organized the scans in
five folds, of 15 or 14 scans each, while trying to create
a similar class distribution in each fold. We present the
cross-validation accuracy over all five folds. In each cross-
validation step we used one fold for testing and the remaining
four folds for classifier training and parameter tuning. For
each fold, we computed the mean accuracy over all patches.
Within each cross-validation step, we optimized the RBM and
random forest parameters using nested cross-validation with
one validation and three training folds. We used the parameters
that gave the best accuracy over the four folds to train a
classifier on the full training set, which we then used to classify
the patches from the scans in the test fold.

We report the mean classification accuracy over all five folds
in the cross-validation. We used the Wilcoxon signed-rank test
to test for significant differences between methods (p < 0.05).
In these tests we compared the classification accuracy per scan
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Fig. 6. Second dataset. In the airway dataset, we extract patches at the airway
centerline (green) and non-airway samples (red) close to the airway.

(73 measurements per method).

B. Dataset 2: Airway centerlines

In our second set of experiments we explored the influence
of the size of the representation – the number of hidden
nodes in the RBM. Since it was computationally unfeasible
to train the convolutional RBM with a very large number
of filters, we performed these experiments on a different
problem with a classification RBM without convolution. We
used 40 lung CT scans from 20 participants of the Danish
Lung Cancer Screening Trial (DLCST) [21]. The voxel size
is approximately 0.78 × 0.78 × 1 mm. Using the output of
an existing segmentation algorithm [40] to find the airways
(Figure 6), we extracted patches of 16×16 voxels at the center
point of airways with a diameter of 16 voxels or less. For each
airway patch, we created a non-airway sample by extracting a
patch at a random point just outside the outer airway wall. We
selected a random subset of 500 patches per scan. We used
15 subjects (30 scans, 15 000 patches) as our training set and
5 subjects (10 scans, 5 000 patches) for testing.

The implementation and parameters were similar to those
for the tissue classification dataset, with a few differences.
Because the airway in this dataset is always in the center
of the patch, we could use RBMs without convolution to
learn a representation. We used between 1 to 256 nodes in
the hidden layer. We used the scans from the training set
to train classification RBMs and standard RBMs. Using the
representation in the hidden layer of the RBM to create the
feature vectors, we trained random forests to classify airway
and non-airway voxels. We optimized the parameters of the
random forests using cross-validation on the training set. We
report the classification accuracy of the classification RBMs
and of the random forests on the test set.

V. RESULTS

A. Filters

Figure 7 shows filters learned by the RBM from the lung
tissue classification dataset, for various mixtures of generative
and discriminative learning. Because of the different random
initializations, each set of filters looks different, but we ob-
served no consistent visual difference between filters learned

β = 0 β = 0.01 β = 0.1 β = 1

discriminative mixed generative

Fig. 7. Example filters learned from the ILD dataset, with different mixtures
of generative and discriminative learning (16 filters of 8× 8 voxels).

Fig. 8. Three filter sets learned from the airway data: 4, 36 or 100 filters of
16× 16 voxels, learned with a mix of discriminative and generative learning
(β = 0.01).

with discriminative or generative learning. These filters are
apparently useful for modeling and classifying the textures
in the data, but there are no recognizable structures. With the
non-convolutional RBM, which we used for the airway dataset,
the filters show more recognizable structures (Figure 8). The
filters show circular structures that resemble the airways in the
training set: a centered, dark circle to represent the airway, and
white blobs that could represent the vessel that is often next to
the airways. With a small number of filters, the RBM learned
more general filters, whereas an RBM with more filters learned
filters that can represent more specific structures.

B. Random forest classification
Figure 9 shows the random forest classification results

comparing RBM-learned filters with different filter banks. The
classification accuracy achieved using the RBM-learned filters
with the best β was better than that using random filters or
one of the predefined filter banks. Random filters and, in most
cases, the Schmid filters performed significantly worse than
the RBM-learned filters. The difference with the Leung-Malik
filter bank was often not significant. The best performance was
achieved using 16 filters of 5× 5 voxels.

Pure generative or discriminative learning usually performed
worse than a mixture of learning objectives. The effects of
using different values for β were most visible with the larger
filters. At most filter sizes, except for very small or very few
filters, using a combination of generative and discriminative
learning seems to give better results than using purely gen-
erative or discriminative learning. The classification accuracy
increases as β decreases, until it decreases again when there
is too much discriminative learning, which increases the risk
of overtraining.

C. RBM classification
We also looked at the classification performance of the RBM

itself, using Equation (9) to compute the posterior probability
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Fig. 9. Random forest classification accuracy on the lung tissue classification dataset, for different feature representations. Large squares indicate RBM results
that are not significantly different (p < 0.05) from the best RBM result for that network configuration. Large circles indicate results that are significantly
different from the RBM result at that β. (All significance values were computed using Wilcoxon signed-rank tests comparing the per-scan classification
accuracies.)

for each class. The accuracy of the RBM was always lower
than that of the random forests (Figure 10). With just the
generative learning objective, the classification accuracy of
the RBM was poor, presumably because this model optimized
only for representation and not for classification. Using the
discriminative learning objective improved the accuracy, but
it was still significantly lower than that of a random forest
trained on the RBM hidden layer. One reason may be that
the classification model of the RBM is much simpler than
that of the random forests. The RBM has a linear decision
function (given the state of the hidden layer) and does not
compute histograms of the feature activations. In addition, the
RBM optimization may be complicated by the fact that the
RBM optimizes two things at the same time (representation
and classification).

D. Influence of the size of the representation

We explored the effects of the filter size and the number
of filters on the classification performance. We expected that
discriminative learning would become less important as the
number of filters increases, because a larger representation

is more likely to include discriminative features even with
generative learning.

Figure 9 shows the results for multiple network configura-
tions with different filter sizes and numbers of filters on the
tissue classification problem. There seems to be a connection
between the number of filters and the point at which the accu-
racy increases. With more filters, more discriminative learning
(a smaller β) is needed. This could be a consequence of the
implementation of the gradients of the energy function: in an
RBM with many filters, the values in the energy function (and
the corresponding gradients) might be larger than when the
number of filters is smaller. The number of filters influences
the gradient for the generative learning objective, but not the
discriminative objective. To achieve the right balance between
discriminative and generative learning, the β should be smaller
for smaller number of filters to compensate for the larger
gradients.

For a closer look at the effect of the representation size,
we performed additional experiments with non-convolutional
RBMs on the airway dataset (Figure 11). On this dataset,
using only or mostly discriminative learning generally gave the
best results. The performance of generative learning depended
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on the number of hidden nodes. With only a few hidden
nodes, generative learning performed worse than discrimina-
tive learning. As we increased the size of the representation,
the gap between generative and discriminative learning almost
disappeared. This seems to agree with our hypothesis that
at the smaller representations, the discriminative objective
helps to learn discriminative features, whereas the generative
objective produces features that are useful for representation
but are less discriminative. As we increased the number of
hidden nodes, generative learning produced enough features
to also include some of the discriminative features.

E. Comparison with our previous results

The results in this paper are largely in agreement with the
results from our previous paper [22]. There are a number of
differences with respect to our previous work. We performed
more extensive experiments, with cross-validation that used
all available scans. We previously used a fixed training and
test set. Because the differences in classification accuracy
between individual scans are large, this makes it hard to
directly compare the results of these and our previous experi-
ments. In general, the classification performance in these new
experiments was better than in our previous experiments.

There are also some technical differences. Previously, we
used support vector machines with linear and radial basis
function (RBF) kernels. In the extended experiments discussed
here, we used random forest classifiers; these classifiers were
easier to train, which made it possible to do a larger parameter
search.

A surprising difference with our previous results was the
improved performance of the Leung-Malik and Schmid filter
banks. Previously, both filter banks performed worse than
the random filter sets. In our current experiments we used
larger training sets and used cross-validation to measure the
mean classification accuracy over all scans, instead of using a
fixed test set. Since there are large differences between scans,
these new results may provide a better estimate of the actual
performance of the standard filter banks.

Despite these differences, the effect of the two learning
objectives in the current experiments largely agrees with the
results of our previous experiments. In both cases, using
a mixture of generative learning gave a better performance
than using only one of the two objectives. The classification
performance of the RBM is also similar to what we found
earlier: lower than the SVM or random forest.

VI. DISCUSSION

We have shown how the classification RBM can be used
to learn useful features for medical image analysis, achieving
a mean classification accuracy that was better than or close
to that achieved using a predefined set of features. To get
good classification results in feature learning, it is important
to use the right learning objective. We found that adding label
information and discriminative learning to the standard RBM
helps to produce filters that improve performance. In some
cases pure discriminative learning worked best, but in most
cases a mixture with generative learning gave better results.
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Fig. 10. The RBM classification accuracy on the lung tissue classification
dataset, for different feature representation methods. Large squares indicate
results that are not significantly different from the best result for that network
configuration. (All significance values were computed using Wilcoxon signed-
rank tests comparing the per-scan classification accuracies.)

The results show that RBM-learned filters have an advantage
over random filters and two standard filter banks.

Random filters performed quite well in our experiments,
although they generally performed worse than the filter banks
and RBM-learned filters. The surprisingly good performance
of random filters has already been noted in the literature [34].
When the number of filters is large enough, convolution with
random filters can provide useful features to train a classifier.
The performance of random filters is a useful baseline because
it allows us to separate the contribution of the convolutional
architecture from that of the feature learning algorithm. The
performance difference between learned and random filters
indicates that the improvement is not just an effect of using a
convolution operator with a number of arbitrary filters.

A. Results on the ILD dataset

The ILD dataset [8] used in our experiments was also used
in other papers. We will give a brief overview of the techniques
and the results before comparing them with our own.

Depeursinge et al., the providers of the dataset, used wavelet
transforms and intensity and gradient features [9]–[11] to
classify tissue patches. They also used this tissue classification
system as a component of a larger image retrieval system
[12]. From the same group, Foncubierta-Rodrı́guez et al. [15]
proposed a retrieval system based on visual words. The five-
class classification accuracy reported in these papers ranges
between 76.1% and 80.8%.

Song et al. used texture, intensity and gradient features,
combined with features based on rotation-invariant Gabor-
local binary patterns and histogram of oriented gradients. Song
et al. [13] first used a dictionary to approximate the test patch
using training patches and then used the approximation error to
classify the patch. They combined this approach with a large-
margin local estimate method to cluster example patches [14],
with a reported classification accuracy of 86.1%. A related
method [41], also based on clustering, provided a 85.8%
classification accuracy. Earlier, the same authors also used
local binary patterns [42] and boosting [43].
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Fig. 11. Classification accuracy on the airway dataset, showing the influence of the number of hidden nodes in the RBM representation on the classification
accuracy, for different mixtures of discriminative and generative learning. The graph on the left shows the classification accuracy of the classification RBM.
The graph on the right shows the classification accuracy of a random forest using the RBM-learned filters.

Asherov et al. [16] used bags of visual words to classify
patches, reporting an accuracy of 79%. Anthimopoulos et
al. [17] used filter banks derived from a discrete cosine
transform, which performed better than Leung-Malik, Schmid,
Gabor and MR8 filters. Dash et al. [44] presented segmenta-
tion methods using Markov random fields, Gaussian mixture
models and mean-shift algorithms.

Several papers applied representation learning methods to
the ILD dataset. Li et al. presented experiments using RBMs
to extract features [18], which gave a classification accuracy
of 77%. In a later comparison, Li et al. reported that convolu-
tional neural networks gave a slightly better performance [19]
(no accuracy given). Gao et al. [20] used convolutional neural
networks to classify full slices, without requiring manually
annotated ROIs. Their patch-based classification showed a
classification accuracy of 87.9%.

It is difficult to compare the results of our experiments
with those in the previously published studies. Although many
papers use a similar approach to extract patches, there are
differences in cross-validation procedures and in the number
of patches. Overall, our classification results seem to be in
the same range, but worse than the state-of-the-art results
[14]. Part of this may be due to a difference in training set
size – the papers with better results use leave-one-patient-out
cross-validation (e.g., [14]), whereas we used five-fold cross-
validation for computational reasons. Other differences may
also be important, such as the number of features (we used
a relatively small number of filters, also for computational
reasons) and the amount of post-processing.

B. How much discriminative learning is required?

There is no single optimal mixture of discriminative and
generative learning. The optimal choice for β depends on the
number and size of the filters, on the application, and on
the dimensions of the data. The results from our lung tissue
classification experiments (Figure 9) show that the influence
of β is strongest for RBMs with larger filters, with lower β
(more discriminative learning) giving a better classification
accuracy. The effect of the number of filters or the number
of hidden nodes is more easily visible in the results of the

airway centerline experiments (Figure 11), which show that
discriminative learning becomes less important for models
with more hidden nodes. Some of these trends will be a result
of the definition of the generative learning objective, which
is derived from an energy function that tends to be larger for
RBMs with many connections (more or larger filters). The
remainder of the effect may be explained by the difficulty
of finding a set of discriminative features. This difficulty is
influenced by two factors: the number and the size of the
filters. A model with only a few filters may require more
discriminative learning than a model with many filters: a large
set of filters is more likely to contain some that are useful
for classification even if the filters are learned with generative
learning, but with a small set of filters it is necessary to be
selective. Similarly, a model with large filters may require
more discriminative learning than a model with small filters,
because the model with larger filters has a larger search space:
a model with larger filters can find more different filters, which
makes it more important to be selective.

The optimal β also depends on the application and dataset.
If it is difficult for the RBM to learn the classification rule,
such as in our lung tissue classification experiments, a mixture
with generative learning proved to work better than purely
discriminative learning. On a somewhat easier problem such
as our airway centerline data, purely discriminative learning
often gave good results as well.

Finally, the optimal mixture depends on the dimensions of
the input data. In this paper, we chose to do feature learning
and classification in 2D, because the lung tissue data that
we used in our experiments is highly anisotropic and has
only 2D annotations. However, given the right training data,
the methods discussed in this paper can be extended to 3D.
Having 3D inputs increases computational complexity, which
is sometimes a reason to use pseudo-3D, as in [28] where
3D data is modeled with a set of orthogonal 2D planes. If
real 3D is used, it is important to limit the number of filters.
At the same time, a 3D model will require more filters to
model the training patches effectively. In those cases a mixture
of generative and discriminative learning could help to learn
fewer but better filters.
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C. Further considerations

Since the mixture of generative and discriminative learning
objectives can improve performance for RBMs, it might be
interesting to try this combination for other representation
learning methods, such as convolutional neural networks, deep
belief networks or deep Boltzmann machines. However, this
requires definitions for both the generative and the discrim-
inative objective. Defining such mixed learning objectives
could be difficult for many multi-layer networks. In this paper
we used single-layer RBMs, for which it is straightforward
to combine discriminative and generative learning objectives.
A similar combined objective could be defined for deep
Boltzmann machines – which are similar to RBMs but have
multiple layers that are trained at the same time – by adding
a label component to the top layer and using a combined
learning objective to update the weights in all layers of the
model. This approach only works for models in which all
layers can be trained at the same time using both learning
objectives. In practice, deep Boltzmann machines are often
initialized with layer-wise pre-training [45], and since this
initialization influences the final solution, it may be important
to include a discriminative objective in this first phase as
well. A similar problem applies to deep belief networks,
which consist of stacked RBMs that are also trained layer-by-
layer [46]. In both approaches, including a temporary label
component while training the lower layers might provide
a solution. In convolutional neural networks, all layers are
trained at the same time, but usually only using a discrimina-
tive objective. Unsupervised generative pre-training can give
good results [47] by using a generative learning objective to
initialize weights that are then refined with a discriminative
learning objective, but this approach separates the generative
and discriminative training. This may give worse results than
training with a combined objective. Classification RBMs have
the advantage that they can be trained with generative and
discriminative objectives simultaneously.

Although we found that learned filters could outperform
the predefined filter banks in our experiments, the predefined
filter banks had one obvious advantage: they did not have to
be learned. Learning the filters can take some time, depending
on the implementation, the hardware and the number and size
of the filters (in our tissue classification experiments, training
one RBM with 16 filters of 8× 8 pixels took approximately 4
days using two CPU cores). The runtime of the classification
RBMs was not longer than that of the standard RBMs. Once
the features have been learned, however, computing features
and training and applying the classifiers does not require more
time than with predefined filter banks.

VII. CONCLUSION

We presented experiments with convolutional classification
RBMs, which we trained with generative and discriminative
learning objectives. Feature learning is usually done with a
purely generative learning objective, which favors a represen-
tation that gives the most faithful description of the data but
is not always the representation that is best for the goal of
the system. This paper showed how the standard generative

learning objective of an RBM can be combined with a dis-
criminative learning objective. In our experiments, evaluating
the classification accuracy of random forests using RBM-
learned features, we found that a mixture of discriminative and
generative learning objectives often gave a better classification
accuracy than generative or discriminative learning alone.
The features learned with the mixed learning objective gave
better results than several standard filter banks. Our results
suggest that adding discriminative learning is most useful
when learning smaller representations, with fewer filters or
hidden nodes.
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