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Abstract. Motion artifacts can have a detrimental effect on the anal-
ysis of chest CT scans, because the artifacts can mimic or obscure gen-
uine pathological features. Localising motion artifacts in the lungs can
improve diagnosis quality. The diverse appearance of artifacts requires
large quantities of annotations to train a detection model, but man-
ual annotations can be subjective, unreliable, and are labour intensive
to obtain. We propose a novel method (code is available at https://
github.com/guusvanderham/artificial-motion-artifacts-for-ct) for gener-
ating artificial motion artifacts in chest CT images, based on simulated
CT reconstruction. We use these artificial artifacts to train fully con-
volutional networks that can detect real motion artifacts in chest CT
scans. We evaluate our method on scans from the public LIDC, RIDER
and COVID19-CT datasets and find that it is possible to train detection
models with artificially generated artifacts. Generated artifacts greatly
improve performance when the availability of manually annotated scans
is limited.

Keywords: Artifact generation · Motion artifact detection · Fully
convolutional network · Chest CT · Thoracic CT · ASTRA toolbox

1 Introduction

Motion artifacts are a common problem in computed tomography (CT) imaging.
They are caused by patient movement during scanning, and can complicate
both manual and automated analysis of the images [2,4,10]. For example, in
chest CT, breathing and heart motion can introduce artifacts such as intensity
undershoots and deformations [2,15]. These artifacts can interfere with tasks
such as gross tumor volume estimation [13], automated airway segmentation [4]
and automated nodule detection [10].

In this paper, we focus on localizing motion artifacts in lung CT. Knowing
the location and severity of artifacts could help to reduce misinterpretations and
improve diagnosis quality [12]. Previously, convolutional neural networks (CNNs)
have been used to detect artifacts in cardiac CT images [6,7,12]. Recently, Beri
[3] applied a U-Net-based model to detect motion artifacts in chest CT images.
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a) No motion b) Heartbeat c) Breathing

Fig. 1. Examples of motion artifacts in chest CT: Motion in the lungs can have multiple
causes. In b) a heartbeat causes spiky artifacts near the heart. In c) the whole lung is
affected with smeared-out features and intensity undershoots.

Training a detection model requires a large training set with annotated CT
scans, especially because motion artifacts in the lungs have a very diverse appear-
ance [2] and need a large number of examples to cover all variations. However,
manually annotating motion artifacts is time-consuming, subjective, and error-
prone. In this study, we observe a large inter-rater variability in the annotated
artifacts, despite the strict annotation protocol and training of the annotators.

To address this data scarcity, we propose a novel method to generate artificial
motion artifacts in chest CT. Starting from clean CT images, our method intro-
duces motion in a simulated CT acquisition. By controlling the location, severity,
and direction of the movement, we can generate a large variety of artifacts, which
can then be used to train a detection model for real motion artifacts.

Our approach has several advantages. It increases the amount of training
data and reduces the dependence on manual annotations. Since it is based on a
simulated CT acquisition, it can use standard CT images and does not require
raw projection data, which is often not available. Finally, the method provides
detailed information about the motion causing the artifacts, which is not avail-
able for real artifacts and could be used to train a motion estimation model.

Related Work. Motion artifacts are common during CT acquisition [2] and are
difficult to correct in post-processing. Most motion artifact removal methods re-
quire raw CT projection data (e.g., [10,22]), although some recent methods work
directly on reconstructed images (e.g., using generative adversarial networks [9]).
Methods for motion correction often have high computational requirements, pro-
duce imperfect results, and can even introduce new artifacts [7].

As an alternative to removing motion artifacts, detection models can be used
to detect them, e.g., for quality assurance. Many detection methods rely on raw
CT projection data, for example, by looking for discontinuities in the sinograms
[14]. Other detection approaches use the final reconstructed image. For example,
Sun et al. [20] developed a pre-processing method that enhances motion artifacts
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Fig. 2. Effects of motion direction: The motion direction relative to the scanner range
changes how blood vessels are deformed. Parallel movement results in arc-shaped ar-
tifacts while perpendicular movement produces star-shaped artifacts with intensity
undershoots on three sides. Figure inspired by Fig. 6 from Lossau et al. [12]

features for easier detection and trained CNNs that classify images containing
artifacts. Beri [3] applied a U-Net to detect artifacts in lung CT images.

Detection models can be trained using artificial artifacts. One way to gener-
ate these artifacts is by using a generative adversarial network (GAN) [19,24],
but these approaches provide little to no control over the resulting artifacts.
Furthermore, GANs require a large amount of training data and can lead to
unreliable results (e.g., [5]).

In this paper, we use a more principled approach to generate artifacts, by in-
troducing motion in a simulated CT acquisition with a predefined motion model.
This is somewhat similar to the work by Lossau et al. [6,7,12], who generate ar-
tifacts in blood vessels in the heart and use those to train an artifact detection
CNN for coronary CT angiography. However, their method relies on perturbing
projection data that is often not available in chest CT. Our approach uses sim-
ulated CT acquisition, which allows us to use reconstructed images directly and
avoid this limitation.

2 Methods

We generate images with artificial artifacts by introducing motion during simu-
lated CT acquisition. Figure 3 shows an overview of our method.

Motion Parameters. The appearance of motion artifacts depends on two key
factors: the direction, and the severity of the motion. The direction of the motion,
relative to the rotation of the detector, determines the shape of the artifact. For
example, small blood vessels that appear as white dots can turn out as spiky arc
or star-shaped artifacts (Fig. 2), depending on the direction of movement. The
severity of the motion determines the size of the artifacts. This motion is often
not equal throughout the lung: for example, heartbeats cause large movements
and strong artifacts near the heart, but have weaker effects elsewhere (Fig. 1b).
Further examples of generated artifacts are shown in Fig. 6.

Artifact Generation. The ASTRA Toolbox [21] for Python simulates CT ac-
quisition based on previously acquired scans. It rotates a virtual detector around
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Fig. 3. Generating motion artifacts: a) M × M Gaussian matrix (M = 9, σ = 0.4)
to simulate decreasing motion severity away from source, b) random N × N sub-
matrix (N = 5) for varying source location, multiplying severity matrix with a vector
(−10, 10) results in c) N × N displacement vector grid over input image determining
the movement at different locations, d) the CT simulation with motion produces the
ASTRA reconstruction of the input image containing artifacts and e) an output from
the elastic deformation algorithm: a mask of movement severity detailing the movement
of every pixel in the input image, f) original center patch (for reference post-processed
the same as final result), g) post-processed final center patch containing artifacts.

an existing CT image, makes projections of the tissue density from different an-
gles, and then computes a reconstruction of the original image using filtered
back projection [16]. We adapt this process by introducing motion during the
simulated acquisition process. For several projection angles, we replace the input
image with an image that has been moved slightly. This mimics a fluid move-
ment, resulting in realistic-looking motion artifacts in the final reconstruction.

Motion Simulation. To simulate realistic motion, we adapt an existing elastic
deformation library [23] to create deformed images and compute a pixel-wise
deformation mask showing the location, strength, and direction of movement.

The elastic deformation method defines a displacement grid D with N ×N
control points to cover the input image. For each control point i, j, a displacement
vector Di,j defines the deformation in the x and y directions. The displacement
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vectors are then interpolated for each pixel in the image to compute a smooth
deformation field, which is used to map the input image to the deformed output.

For our purpose, we define the displacement grid to describe the severity and
direction of motion (Fig. 3). We generate a Gaussian matrix of size M×M , with
M > N and random standard deviation σ, and crop this to N ×N to define the
motion severity at each control point. For small σ, this results in a strong, local
motion concentrated at one control point, whereas a large σ produces movement
in a larger area. To obtain the direction of the movement, we sample a random
motion vector from a uniform distribution U(−d, d). By multiplying this motion
vector with the severity at each grid point, we obtain a smooth displacement grid
D. During the simulated CT projection, we simulate a fluid movement by slowly
changing the displacement grid: from zero displacement in the first projection
step to the full displacement D at the end, with linear interpolation in between.

Detection Network. We evaluate our artificial artifacts by training detection
models. We train fully convolutional networks (FCN) [11] that take a 64 × 64
patch as input and output a single probability. The architecture is shown in
Fig. 5. The fully convolutional nature of the network allows for input images of
arbitrary size. Inputs larger than the original input size produce a probability
map in which each output pixel corresponds to a 64 × 64 input region. The
boundaries of this region can be calculated based on the number of max pooling
operations in the network. We upsample the prediction to match the original
input resolution, averaging the probabilities in regions with overlapping receptive
fields. This produces a coarse heatmap with high probabilities in the core areas
containing artifacts and decreasing probabilities around the borders.

3 Experiments

For our evaluation, we generated motion artifacts to train the FCN detection
model under varying conditions. In all settings, we used the Adam optimizer with
binary cross-entropy loss, a minibatch size of 128, and a learning rate of 10−4

decaying by 2% each epoch to 10−5. After training for 128 epochs, the model
with best validation performance is selected. All components were implemented
in Python using the Tensorflow framework.

Data. We used the public LIDC dataset [1] for most of our experiments. We
created random subsets of 75, 32, 25 scans for training, validation, and testing. To
measure generalizability, we used two additional test sets of 9 randomly selected
scans each from the RIDER [17] and COVID19-CT [18] datasets.

Annotations. Each scan was annotated by one of three analysts following an
annotation protocol. For the 75 training scans, the analysts were supervised by
an analyst with more experience in annotating motion artifacts. We only used
annotations located within the lungs.

To measure the inter-annotator agreement, 25 scans in the LIDC test set
were annotated by all three analysts. The agreement was computed using Fleiss’
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κ [8], taking every voxel inside the lung masks as a sample (motion / no motion).
This resulted in a κ of 0.35. This relatively low agreement illustrates the difficult
and subjective nature of the manual annotation task.

To strengthen the reliability and consistency of the evaluation, each scan in
the LIDC, RIDER and COVID19-CT test sets was also annotated by the more
experienced analyst. By going through all scans, checking and combining the
different annotations, the experienced analyst obtained a more consistent and
complete ground truth. We used these final annotations in our evaluation.

Patch Sampling and Artifact Generation. Scans were normalized and
masked using lung masks. We sampled ‘real motion’ (RM) patches of 64 × 64
pixels from areas with annotated motion artifacts, and ‘clean’ patches of the
same size from slices with no annotated motion artifacts. To generate ‘artificial
artifact’ (AA) patches, we sampled clean patches of 128 × 128 pixels and gen-
erated motion artifacts using our proposed method. For motion simulation we
used M = 9, N = 5 and a random σ between 0.1 and 1.2. Finally, we extracted
the 64 × 64 center patch to avoid border artifacts. We observed that the AS-
TRA reconstruction algorithm sometimes produced slightly pixelated outputs.
We applied mild Gaussian filtering (σ = 0.5) to remove this effect. We also ap-
plied smoothing to all other training patches and test images, to prevent the
model from learning to recognize AA patches by the amount of smoothing.

Evaluation. We evaluated the models by comparing their pixel-wise predictions
for all CT slices in all test scans with the ground-truth annotations. Only the
predictions inside the lung masks were evaluated. We computed the area under
the ROC-curve as our main metric, as this shows the model’s ability to separate
positive from negative samples over a broad range of operating points. Based on
a visual verification of the predictions, we found that an AUC over .80 represents
excellent performance at localizing the core areas that are affected by motion,
with most errors located near the (subjective) boundaries of the annotations.

Experiment Set-Up. We performed three experiments: training AA models
using AA patches and clean patches, RM models using RM patches and the same
sets of clean patches, and combined models using all three types of patches.

In the first experiment, we looked at how the artifacts generated by our
method compare against real motion artifacts. Both models were trained on
100 000 clean patches and 100 000 AA or RM motion patches.

In the second experiment, we explored how the models perform with limited
training data. One of the advantages of the proposed method is its ability to
generate a large amount of AA patches from a small set of clean patches. In this
experiment, we compared the performance of AA, RM and combined models
trained on subsets of our full training set, by extracting patches from a random
subset of 1 to 75 training scans. The RM models have to rely on the small
amount of RM patches that they can sample from a set of scans. In contrast,
using our method, the AA models have access to a wide variety of AA patches
generated from a much larger set of clean patches. For comparison, we also
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4a) ROC Analysis 4b) Effect of Data Amount on Performance 4c) Model Comparison
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Fig. 4. Experiment results: a) An AA and RM model trained with 200 000 patches each
show comparable performance, signifying that artificial artifacts are relatively good
representations of real artifacts. Analyst performance relative to ground truth is shown.
b) Generating artificial artifacts improves performance greatly when access to scans is
limited. c) The RM models and the combined model show better generalizability than
the AA models.

trained ‘combined’ models’ by sampling 50% of training patches from the pool
of AA patches and the other 50% from the pool of RM patches that are available
in each condition. We repeated this experiment three times for each condition,
and report the mean and range of performances over all runs.

In the final experiment, we evaluated the generalizability of our models. We
trained three AA, RM and combined models using the complete LIDC training
set, and report their mean performance and standard deviation on the LIDC,
RIDER and COVID19-CT test sets.

4 Results

Experiment 1: Training with Equal Amounts of Data. In the experi-
ment with an equal amount of training data (Fig. 4a), the performance of the
AA model (AUC of .765) trained with artificial motion patches comes close to
that of the RM model (AUC of .800) trained with real motion patches. This
indicates that the proposed method generates motion artifacts that look suf-
ficiently convincing to train a model to detect real motion artifacts in unseen
scans. The slightly lower performance of the AA model suggests that the ar-
tificial artifacts are not perfect imitations of real motion artifacts. We suspect
this might be caused by pixelation introduced by the ASTRA-reconstruction
algorithm, by a limitation of the relatively simple motion model used in our
experiments, or because the automatic segmentations do not perfectly match
the manual annotations of the test set (e.g., because of a consistent over- or
undersegmentation).

Experiment 2: Advantage of Generating Data. When training data is
scarce, generating and training with artificial artifacts improves performance
(Fig. 4b). The RM models trained with real motion artifacts perform poorly
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when only 1 to 20 training scans are available. In contrast, the AA models
trained with artificial artifacts perform much better. As expected, adding more
scans improves the performance of the RM model, but this improvement levels
off after about 45 scans. The AA models are less dependent on the amount of
available training scans. Using our method we can train an effective model with
very little training data. If enough data is available, training with real motion
artifacts is slightly better. Combining both types of motion patches usually works
best: it outperforms the RM model if the available RM data is limited, and does
not perform worse than the RM model if the amount of RM data is large enough.

Experiment 3: Model Comparisons and Generalizability. As in the pre-
vious experiments, we find that given enough data a model trained using real
artifacts outperforms a model trained using only artificial motion artifacts. We
find that that both the combined and RM models generalize well (Fig. 4c), while
the AA model shows decreased performance on the RIDER and COVID test sets.
In this experiment, where the number of real artifacts is sufficiently large, com-
bining artificial and real artifacts does not strongly improve the performance.

5 Discussion

In this work we proposed a novel method to generate artificial motion artifacts by
introducing motion in a simulated CT acquisition. The artificial artifacts can be
used to train artifact detection networks without requiring manual annotations.
We evaluated our method on three public datasets by training detection networks
with real or artificial artifacts. We found that the artificial artifacts were realistic
enough to train models that can detect real motion artifacts. Our method was
especially effective when the availability of annotated CT scans was limited.

By using simulated CT acquisition, our method can be applied on CT images
directly, without the need for projection data. By visual inspection we found
that the generated artifacts look very convincing, although post-processing was
needed to remove some pixelation introduced by the reconstruction algorithm.
Our method allows precise control over the simulated motion. By varying the
motion hyperparameters we can easily generate additional training data with a
great diversity of artifacts, starting from a small set of CT images.

In addition to the reconstructed image, our method generates a ‘motion mask’
that specifies by how much and in which direction each pixel in the input image
has moved during the simulation. This information can not be obtained from
manual annotations, but would be very useful for training motion severity esti-
mation models. These models can determine the severity of artifacts in real CT
images [12]. Some lung analysis tasks are more sensitive to motion than others.
For these applications, motion estimation models trained with artificial artifacts
could be used to automate quality assurance decisions.

Our finding that models trained using only artificial artifacts performed
slightly worse than models trained using only real motion artifacts suggests that,
even though the proposed method generates realistic artifacts, the distribution of
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Fig. 5. Network architecture: The FCN takes a 64 × 64 patch and passes it through
3 convolutional blocks. Each block consists of 3 convolutional layers. Kernel sizes are
indicated at the top and number of filters are indicated at the bottom. Each block ends
with a Batch Normalization (bn), ReLU (rl), Dropout (dr) and MaxPooling (mp) layer.
After the three blocks an additional three 1 by 1 convolutions and Sigmoid activation
produce a single probability.

the generated artifacts does not perfectly match the distribution of real motion
artifacts. This may be caused by pixelation introduced by the ASTRA-Toolbox,
or by a mismatch between the artificial segmentations and the manual ground
truth, but it might also be related to the diversity of the generated artifacts.

The diversity of artificial artifacts depends on the motion model. The pro-
posed motion simulation can generate a wide range of artifacts but it is not ex-
haustive: the generated artifacts only represent a subset of all possibilities. Given
a sufficient number of real artifacts, the method might observe a greater diver-
sity in artifact appearances, which could explain why detection models trained
with a large number of real motion artifacts outperform the models trained with
artificial artifacts. This could be resolved with a more advanced motion model.

Motion artifact detection is a challenging task, and determining the bound-
aries of areas affected by motion can be subjective. This is also reflected in the
low inter-annotator agreement of our manual annotations. In our experiments,
we evaluated voxel-level predictions, which gives a good idea of the performance
of the model but is sensitive to over- and undersegmentation. By visual inspec-
tion, we found that the models were often able to locate the affected areas, but
had a tendency to overpredict. This might be solved by improving the detection
model, e.g., using false-positive mining [3] or other forms of regularization.

In summary, the proposed method for motion artifact generation can be
used to obtain additional training data with a great diversity of artifacts. This
contributes to better artifact detection and motion severity estimation models. In
turn, these models could improve scan and diagnosis quality for both automated
analysis pipelines and human analysts.
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Original No Mo�on Weak Mo�on Strong Mo�on

Fig. 6. Further examples of artificial motion artifacts generated with the proposed
method: The first column shows the center patch of the original input image. The
second column shows the ASTRA reconstruction without any motion. Columns 3 to
6 show ASTRA reconstructions with increasing motion severity. The motion vector is
indicated above the patch. All patches received the same post-processing as described
in the paper.
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