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Recent advances in importance-weighted active learning solve many of the
problems of traditional active learning strategies. But does importance-
weighted active learning also produce a reusable sample selection? is paper
explains why reusability can be a problem, how importance-weighted active
learning removes some of the barriers to reusability and which obstacles
still remain. With theoretical arguments and practical demonstrations, this
paper argues that universal reusability is impossible: because every active
learning strategy must undersample some areas of the sample space, classiĕers
that depend on the samples in those areas will learn more from a random
sample selection. is paper describes several reusability experiments with
importance-weighted active learning that show the impact of the reusability
problem in practice. e experiments conĕrm that universal reusability does
not exist, although in some cases – on some datasets and with some pairs of
classiĕers – there is sample reusability. is paper explores the conditions that
could guarantee the reusability between two classiĕers.

1 Introduction

Active learning is useful if collecting unlabelled examples is cheap but
labelling those examples is expensive. An active learning algorithm looks
at a large number of unlabelled examples and asks an oracle to provide the
labels for the examples that look interesting. e premise is that labelling
is expensive – it may involve asking a human or doing an experiment – so
a good active learner will try to reduce the number of labels it requests;
it will only query those examples that it expects will lead to the largest
improvements of the model. If the active learner can do this it can achieve a
lower label complexity than random sampling: by skipping useless examples,
active learning can learn a better model with fewer labels.

Choosing the best examples is difficult: the learner does not know the la-
bels in advance, so it must estimate how much each example might improve
the model. Most algorithms base these estimates on the examples labelled
in previous iterations (Figure 1). Some algorithms will also look at the dis-
tribution of the unlabelled samples. In general, almost every active learning
strategy uses knowledge about the model that needs to be built: a different
classiĕer may require a different sample selection. ...

train classiĕer

.

initial training set

. select next example.

ask oracle for label

.add to training set

Figure 1: Active learning is an iterative
process; most algorithms use the samples
selected in a previous iteration to decide on
the next sample.

For example, uncertainty sampling – one of the early active learning
strategies, introduced by Lewis and Gale (1994) and still very popular –
is a simple strategy that trains an intermediate classiĕer in each iteration
and selects the example about which this classiĕer is most uncertain. In
probabilistic classiĕers the uncertainty is easily measured by the probability:
if the classiĕer assigns a probability of 0.9 or 0.1 it is more certain of the
label than if it assigns a probability close to 0.5. In support vector machines
the uncertainty can be deĕned as the distance to the decision boundary: the
sample with the smallest margin is the example that should be labelled next.
Uncertainty sampling is simple to understand and easy to implement, but it
is not without faults. Some of these faults will be discussed later.
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Active learning works in two phases (Figure 2): ĕrst the selection strategy
selects and labels examples – perhaps training some intermediate classiĕers
to aid in the selection – and produces a set of labelled examples. e classi-
ĕer that is used in this phase is the selector. In the second step, the collected
examples are used to train a ĕnal classiĕer that can be used to classify new
examples. is classiĕer is the consumer.

Most active learning methods assume that the selector and the consumer
are the same. is scenario is self-selection: the classiĕer algorithm that
is used during the selection is also used to train the ĕnal classiĕer. Self-
selection gives the best chances for active learning, since the best way to
learn the value of a new example for a classiĕer is to ask the classiĕer itself.
Perhaps because it is the obvious choice and generally performs well, most
studies are limited to self-selection. ere is also no need to do otherwise,
as these studies oen start with fully labelled data and only simulate the
labelling; this makes it easy to redo the selection with a different classiĕer.

..selector A.

labelled training data

.

consumer A

.

consumer B

.

self-selection

.

foreign-selection

Figure 2: Active learning is a two-step
process: ĕrst the samples are selected, then
a ĕnal classiĕer is trained. In self-selection
the same classiĕer is used for the selector
and the consumer. In foreign-selection the
consumer is a different classiĕer.

e other scenario, foreign-selection, where the selector and consumer
are different, has received less attention than it needs. e scenario may
seem counter-intuitive at ĕrst, but there are many practical situations where
the samples selected for one classiĕer are used to train another classiĕer.
For example, creating a labelled training set may be a large investment
that is only worth the expense if the data can be reused for many different
applications – maybe even for future applications that are not yet known
when the selection is made. Another reason to use foreign-selection is
efficiency: the ĕnal model may be so complex that it is too expensive to
retrain it for each selection step. In that case a simpler, faster model may be
used for the selection phase (e.g., Lewis and Catlett, 1994). And, as a ĕnal
example, in some applications it is only possible to select the best way to
model for the problem aer the examples have been selected – for example,
in natural language processing it is not uncommon to collect and label the
data ĕrst and only then decide on the best language model (Baldridge and
Osborne, 2004).

Using the samples selected for one classiĕer to train another is a form of
sample reuse. Sample reuse is always possible, but is it also a good idea?
In any active learner, the sample selection is based on the preferences of
the classiĕer used in the selection; it is far from obvious that a completely
different classiĕer will be able to learn from the same sample selection.
Sample reusability indicates the scenario where sample reuse is successful.
ere is said to be sample reusability if the consumer learns more, or at
least not less, from the active selection than it would learn from a random
selection of the same size.

Sample reusability is important for the decision to use active learning.
Active learning is useful if it improves the model performance and reduces
the number of labelled samples. But if foreign-selection is necessary and
there is no sample reusability, it would be better not to use active learning.

e main reason why sample reusability can be a problem is the bias
in the active sample selection. Active learning makes a sample selection
that is biased towards the selector: compared with a random selection
of samples, the active selection includes more samples in areas that the
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selector ĕnds interesting and fewer in other areas. If the consumer does not
share the selector’s preferences, there may be areas that the selector thought
uninteresting but that the consumer ĕnds very important. In that case the
consumer will ĕnd better information about these areas in the random
selection. e active selection might compensate with better information in
other areas, but this will not always be enough. If the negative effects of the
bias are larger than the positive effects, it may have been better not to use
active learning.

Importance-weighted active learning (IWAL) is a recent active learning
strategy that aims to reduce the bias in the sample selection. It solves the
problems of uncertainty sampling and other simple active learning strate-
gies by combining a biased random selection process with importance
weighting. Because of the importance weights, importance-weighted ac-
tive learning provides unbiased estimators for the prediction error. is
is a useful property that might improve the sample reusability. In fact, the
authors of the importance-weighted active learning framework claim that
because the estimates are unbiased, the algorithm will produce a reusable
sample selection (see Beygelzimer et al., 2011, and the related presentation).
is paper investigates this claim and concludes that it is not true: unbiased
estimators help, but they are not enough to guarantee sample reusability.

The rest of this paper explores these topics in more detail. Section 2 gives
a deĕnition of sample reusability and provides a short overview of earlier
research. Section 3 introduces importance-weighted active learning; sec-
tion 4 explains how it corrects the bias in the sample selection and why this
solves part of the reusability problem. Section 5 shows that bias correction
is not enough and discusses the important differences between random and
active sample selections. Section 6 argues that there is no universal reusabil-
ity. Section 7 describes experiments with the reusability of importance-
weighted active learning in practice. ere may still be reusability between
some classiĕer pairs, so section 8 tries to ĕnd the necessary conditions.

2 Sample reusability

An active learner makes a sample selection for a particular classiĕer, the
selector, but the ĕnal result does not have to be an instance of that same
classiĕer. Perhaps the samples will be used to train a different type of clas-
siĕer, the consumer, or perhaps the samples are even used for something
other than classiĕcation. ese are examples of sample reuse: reusing the
sample selection for something for which it was not selected. Tomanek
(2010) gives a more formal deĕnition:

Deĕnition 2.1 (Sample reuse). Sample reuse describes a scenario where a
sample S obtained by active learning using learner T1 is exploited to induce
a particular model type with learner T2 with T2 ≠ T1.

Sample reuse is always possible; the question is how well it works. e
sample selection is based on the preferences of the classiĕer that makes
the selection, so it is acceptable for foreign-selection to perform somewhat
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worse than self-selection. But at least foreign-selection should give a better
performance than learning from a random sample: if sample reuse is worse
than random sampling, it would be better not to use active learning at all.
erefore, we speak of sample reusability if we expect that the consumer will
learn more from the samples selected by the selector than from a random
sample selection. is is reĘected in the deĕnition of sample reusability by
Tomanek (2010):

Deĕnition 2.2 (Sample reusability). Given a random sample SRD, and a
sample ST1 obtained with active learning and a selector based on learner T1,
and a learner T2 with T2 ≠ T1. We say that ST1 is reusable by learner T2 if
a model θ′ learned by T2 from this sample, i.e., T2 (ST1), exhibits a better
performance on a held-out test set T than a model θ′′ induced by T2 (SRD),
i.e., perf (θ′,T ) > perf (θ′′,T ).

Note that this deĕnition of sample reusability is subject to chance. It de-
pends on the initialisation and samples presented to the algorithm. In this
paper, sample reusability means expected sample reusability: does the algo-
rithm, averaged over many runs, perform better with active learning than
with random sampling? at is, there is sample reusability if

E [perf (θ′,T )] > E [perf (θ′′,T )]

Early active learning papers occasionally mentioned sample reusability –
for example, Lewis and Catlett (1994) discuss “heterogeneous uncertainty
sampling” – but overall the problem has received little attention. ere is
still no clear answer to why, when and whether foreign-selection works. In
the most extensive study so far, Tomanek and Morik (2011) formulated and
tested a number of hypotheses about foreign-selection with different classi-
ĕers and datasets. e results are inconclusive: foreign-selection sometimes
works and sometimes does not, and there are no classiĕer combinations that
always perform well. None of the hypotheses, such as “similar classiĕers
work well together”, could be conĕrmed. Experiments by Baldridge and
Osborne (2004) and by Hu (2011) show similar results.

ese studies have an important limitation: they only discuss uncertainty
sampling, one of the simplest active learning strategies. Uncertainty sam-
pling has well-known problems (Dasgupta and Hsu, 2008) that could ex-
plain some of the results of the reusability experiments: it creates a strongly
biased sample selection, which is a problem since some classiĕers are very
bias-sensitive (Zadrozny, 2004; Fan and Davidson, 2007), and does noth-
ing to reduce this bias. With foreign-selection the bias may be even worse,
because it was created for a different type of classiĕer.

e reusability results are probably not independent of the selection
strategy. If the bias is one reason why uncertainty sampling does not pro-
duce reusable results, a selection strategy with a weaker bias might improve
the sample reusability. e next section will discuss importance-weighted
active learning, a recent selection strategy that solves several bias-related
problems. Because it uses importance weighting to correct the bias in the
sample selection, it might also produce more reusable sample selections.
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3 Importance-weighted active learning

Importance-weighted active learning (Beygelzimer et al., 2009) appears to
solve many of the problems of earlier active learning strategies, because it
combines importance weighting with a biased random selection process.
Importance weighting helps to correct the bias, while the randomness in
the selection ensures that the does not systematically exclude any area of the
sample space. Together, these two properties make it possible to prove that
importance-weighted active learning will converge to the same solution as
random sampling (Beygelzimer et al., 2010).

e importance-weighted active learning algorithm (Figure 3) is a se-
quential active learner: it considers each example in turn, and decides im-
mediately if this new example should be labelled or not. e algorithm uses
a “biased coin toss” to decide if it should label the example, with a selection
probability Px that deĕnes the probability that example x will be labelled. If
an example is selected, it is labelled and added to the labelled dataset with
a weight set to the inverse of the selection probability (the next section will
explain why this is a useful choice).

For each new example x:

1. Calculate a selection probability Px for x.

2. With probability Px: query the label for x and add x to the labelled
dataset with importance weight wx = 1

Px
.

Figure 3: e importance-weighted active
learning algorithm (Beygelzimer et al.,
2009).

Different implementations of importance-weighted active learning have
different deĕnitions for the selection probability, but they share the same
idea: the probability should be higher if the new example is likely to be
interesting, and lower if it is not. e number of samples in the labelled
dataset depends on the deĕnition of the selection probability. An imple-
mentation with higher selection probabilities will select more samples than
an implementation that tends to choose smaller selection probabilities.

It is important that the selection probabilities are always greater than
zero. is guarantees that the algorithm will eventually converge to the
optimal hypothesis and does not show the missed cluster problem. e
missed cluster problem (Dasgupta and Hsu, 2008) explains how simple
active learners can end up in a local optimum and can produce a classiĕer
that is very far from the optimal classiĕer.

..
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Figure 4: e missed cluster problem: if
the initial samples are drawn from the
two groups in the middle, close-to-the-
boundary sampling will keep querying
samples near the initial boundary w.
Because it never looks elsewhere, the
classiĕer will never ĕnd the optimal
boundary w∗. (Dasgupta and Hsu, 2008)

For example, consider uncertainty sampling, the simple strategy that
selects the example that is closest to its current decision boundary. is
selection strategy is likely to produce missed cluster problems (Figure 4).
Because it only collects examples near its initial guess, it will never explore
the rest of the sample space: it might miss important samples. If the ini-
tial guess is close to a local optimum, the algorithm will select examples
that bring it closer to that local optimum. In importance-weighted active
learning, the non-zero selection probabilities guarantee that the algorithm
explores the complete sample space and will eventually converge to the
optimal hypothesis.
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Beygelzimer et al. (2010) use the following deĕnition of the selection proba-
bility Pk of the kth sample:

Pk = min{1,( 1
G2

k
+ 1

Gk
) ⋅ C0 log k

k − 1
} where Gk = err (h′k, Sk) − err (hk, Sk)

It compares the error of two hypotheses hk and h′k, on the current set of la-
belled samples Sk. hk is the current hypothesis, that is: the hypothesis that
minimises the error on Sk. h′k is the alternative hypothesis: the hypothesis
that disagrees with hk on the label of the sample k, but otherwise still min-
imises the error on Sk. C0 is a free parameter that scales the probabilities:
choosing a larger C0 will select more samples.

e errors of the two hypotheses give an idea of the quality of the current
prediction. e current hypothesis is optimal on the current set of labelled
samples, but it is not necessarily optimal on the true distribution. e
alternative hypothesis cannot be better than the current hypothesis on the
current set, but it can still be better on the true distribution.

ere are two possibilities. Suppose that on the true data, the alternative
hypothesis is better than the current hypothesis. In that case the errors of
the two hypotheses on the current set are likely to be close together, since
the current hypothesis can never be too far off – it converges to the optimal
solution, aer all. Suppose, on the other hand, that the current hypothesis
is indeed better than the alternative, even on the true data. In that case the
error of the alternative hypothesis on the current data is likely to be higher
than that of the current hypothesis.

e difference between the two errors predicts how valuable the new
example could be. If the difference is small, it is likely that the current hy-
pothesis is wrong. e current set of data does not provide enough informa-
tion on this new sample, so it is useful to ask for the label. If the difference
is large, it is likely that the current hypothesis is correct. e current set of
data has evidence to support the current label of the new example, so it is
probably not useful to ask for the label.

Beygelzimer et al. (2010) use this intuition in their deĕnition of the
selection probability: a larger difference in error leads to a smaller selection
probability. Note also that the selection probabilities become smaller as the
number of samples grows: the more samples seen, the more evidence there
already is to support the current hypothesis. In their paper, Beygelzimer
et al. provide conĕdence and label complexity bounds for their deĕnition.
As expected, there is a trade-off between the quality of the prediction and
the size of the sample selection. Large C0 provide large sample selections
and results similar to random sampling, whereas small C0 provide smaller
sample selections that are sometimes much worse than random selections.

4 Bias correction with importance weights

Like any active learning algorithm, importance-weighted active learning
creates a biased sample selection: there are more samples from areas that are
interesting to the selector, and fewer from other areas. is bias cannot be
prevented – active learning is only effective if it can skip certain examples –
but there are ways to correct the bias before training a classiĕer.
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Importance weighting is one way to correct the bias in a sample selection.
Importance-weighted active learning assigns a weight wx to each example
in the selection: larger weights for examples from undersampled areas and
smaller weights for the examples that have been oversampled. Importance-
weighted versions of classiĕers use these weights in their optimisations. For
example, the importance-weighted zero-one classiĕcation error could be
deĕned as the sum of the normalised weights of the misclassiĕed samples.
If the importance weights are set to the correct values, this importance-
weighted estimator is an unbiased estimator for the classiĕcation error.

e quality of importance weighting depends on the correct choice of
the importance weights. One option is to derive the weights from density
estimates, by comparing the density of the sample selection with that of the
true distribution. Making this estimate is difficult, so this method can lead
to variable and unreliable results.

Importance-weighted active learning has an advantage: because it makes
a biased-random sample selection with a known selection probability, the
algorithm knows exactly how biased the selection is. By using the inverse
of the selection probability as the importance weight, importance-weighted
active learning can calculate the perfect correction to its self-created bias.
Beygelzimer et al. (2010) prove that the importance-weighted estimators of
importance-weighted active learning are indeed unbiased.

To see how this works, compare the probability density of an example
in random sampling with that same probability density in importance-
weighted active learning. In random sampling, the probability density of x is
equal to its density in the true distribution: PRD (x) = P (x). In importance-
weighted active learning, the probability density of x in the labelled set de-
pends on two things: the density in the true distribution, i.e., the probability
that the sample is offered to the algorithm, and the probability s (x) that the
algorithm decides to label the example: PIWAL (x) = P (x) ⋅ s (x). It gives the
example the importance weight 1

s(x) , so the expected importance-weighted
density of x is the same in both algorithms: PRD (x) = 1

s(x) ⋅PIWAL (x) = P (x)
and the sample selection is unbiased.

With its ‘perfect’ importance weights, importance-weighted active learning
can perhaps provide a better sample reusability than unweighted active
learning strategies. e skewed, biased density distribution of the active
selection can be corrected into an unbiased estimate of the true density
distribution. is removes one component that limits sample reusability.

With the importance weighted correction, the density of the samples se-
lected by importance-weighted active learning converges to the density that
would be expected from random sampling. Given an unlimited supply of
samples, the two density distributions will eventually become very similar.

Unlike unweighted active learning, where the bias alone can be enough
to prevent reusability, importance-weighted active learning creates an unbi-
ased sample selection that might be more reusable. For this reason, it seems
that importance-weighted active learning should always be preferred to
active learning without importance weights.
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5 Are the sample distributions the same?

While importance weighting corrects the bias and produces unbiased esti-
mators, there are still two important differences between the active selection
and the random selection. One, the unweighted distribution of the samples
is different, so the active selection has different levels of detail than the ran-
dom selection. Two, the importance weights introduce an extra source of
variance in the density distribution.

Although the correction makes the averaged, importance-weighted density
of the active sample selection equal to the density of the random sample
selection and the true distribution, the unweighted density is different. In
importance-weighted active learning, the unweighted probability density of
x, PIWAL (x), depends on the selection probability s (x) that is determined
by the algorithm. On average, compared with random sampling and the
true distribution, the active sample selection will have relatively more exam-
ples for which s (x) is large and relatively fewer examples for which s (x) is
small. is is normal, since the active learner would not be an active learner
if it did not inĘuence the sample selection.

A simple experiment shows that an importance-weighted active learner
has a preference for examples that are interesting to its classiĕer. e Vow-
pal Wabbit is an implementation of the importance-weighted active learn-
ing algorithm, with a selection probability similar to that of Beygelzimer
et al. (2010). Figure 5 shows the sample selection of the Vowpal Wabbit on
a simple two-class problem with uniformly distributed samples. Random
selection follows the uniform density, but the active sample selection is dif-
ferent. e unweighted density of samples near the decision boundary at
x = 0 is much higher in the active selection than it is in the random selec-
tion (top). is cannot be repaired. Importance weighting gives the correct
weighted probability density (bottom), but the absolute number of selected
examples is still different. ere are more examples in some areas and fewer
examples in others, relative to a random selection of the same size.
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Figure 5: Two plots of the density of
active learning selections made by the
Vowpal Wabbit (1000 runs with 1000
unlabelled examples, for various C0). e
1D problem has two uniform classes, class
−1 at x = [−1, 0) and class +1 at x = [0, 1].
e importance-weighted density (bottom)
follows the true class distribution, but the
unweighted density (top) shows that the
algorithm selects most examples from the
area around the decision boundary. e
peak in the middle is more pronounced if
the algorithm can select fewer examples
(smaller C0); most queries outside that area
were made with the less aggressive settings
(larger C0).

e sampling priorities affect the level of detail: there will be more detail
in areas with more examples, but there will also be less detail in areas with
fewer samples. is could be a problem if the underrepresented areas are
of interest to the classiĕer: if the active selection has fewer details there, the
classiĕer might be better off with a random sample.

Because of this difference, sample reusability cannot be guaranteed.
e lack of detail means that for every problem, there is probably a pair
of classiĕers that does not work together. is leads to the conclusion that
there is no universal reusability. is is discussed in section 6. In some
cases, there may still be reusability if two classiĕers are interested in the
same details. Section 8 discusses some conditions that guarantee this.

There is another source of trouble: the importance weights increase the
variance in the sample distribution. e importance-weighted distribution
may be similar to the random distribution on average, but in a single run
of the algorithm the sample selection can be very dissimilar. e algorithm
gives large importance weights to samples with a small selection probability,
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to compensate for their relative undersampling in the average dataset.
However, in the few datasets where one or more of these rare samples are
selected, their large importance weight will give them a disproportionally
strong inĘuence. is effect averages out when the number of samples
increases, but it could be a problem with small sample sizes.

Perhaps the problem can be illustrated with a practical experiment. Such
an experiment would need a dataset with outliers that 1. cause a signiĕcant
change in the classiĕer, 2. are so rare and outlying that they are not a prob-
lem for random sampling, but 3. are still common enough to be picked by
the active learning algorithm oen enough to be a problem. Requirements
2 and 3 are contradictory: the outliers must be rare and frequent at the same
time. One way to achieve these goals is to spread a large number of outliers
over a large area. Individually they are outliers, but there are enough to
ensure that one or two will be selected.

Consider this experiment on a dataset with circular outliers (Figure 6),
with the linear Vowpal Wabbit as the selector and a consumer based on
quadratic discriminant analysis (QDA). e dataset has two dense clus-
ters in the middle and a circle of outliers orbiting those two clusters. e
outliers have a label that is the opposite of the label of the closest cluster.
Aer tuning the number of samples in the circle, it is possible to ĕnd a dis-
tribution where the QDA classiĕer trained on the active samples performs
consistently worse than the QDA classiĕer trained on random samples (Ta-
ble 1). Closer inspection of individual runs shows that many cases, the QDA
classiĕer is thrown off-balance by an outlier with a heavy weight.

..0.1% .49.9% . 49.9%. 0.1%

Figure 6: e ‘circle’ dataset: a 2D problem
with two dense clusters and a very sparse
circle with samples from the opposite class.It is quite hard to trigger this behaviour on purpose: it does not happen

at small sample sizes, the density of the outliers has to be just right, and
this distribution does not cause problems for linear discriminant analysis
or linear support vector machines. Still, this example illustrates that the
importance weights can sometimes introduce new problems.

# unlab. IWAL error Random error
10 0.1573237 0.1565162
50 0.05967161 0.06077859

100 0.05496723 0.05203855
500 0.04241635 0.02837003

1000 0.0372564 0.02339909
2500 0.03063014 0.02009514
5000 0.02538832 0.01889917

10000 0.02075104 0.01631644

Table 1: Errors of QDA with IWAL and
random sampling, on the circle dataset with
circle density 0.001, for different numbers
of available (unlabeled) examples. e
mean error with IWAL was signiĕcantly
higher than with random sampling.

6 Consequences for reusability

e lack of detail in some areas of an importance-weighted active selection
has consequences for the reusability of that selection. In the areas that are
undersampled by active learning, the random selection can provide more
detail than the active selection. is is important if the consumer depends
on the information from those areas. If the active selection provides less
detail than the random selection, the consumer might have learned more
from the random selection: sample reusability cannot be guaranteed.

Whether this problem occurs in practice depends ĕrst of all on the
correspondence between the selector and the consumer. If both classiĕers
are interested in the same areas of the sample space, the examples will also
be useful to both classiĕers. Even if only some parts of the areas of interest
overlap, active learning could still be better if the improvement in one area
is large enough to compensate for the loss in another area.

e effect also varies with the sample size. At small sample sizes the
lack of detail can matter. At larger sample sizes the difference becomes less
noticeable – there are more samples even in undersampled areas – but the
active selection may still have less detail than a random sample of equal size.
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Since there are almost always some consumers that need details that the
selector did not provide, the conclusion must be that sample reusability
cannot be guaranteed. e lack of detail in undersampled areas means that
there is always the possibility that a consumer would have learned more
from a random than from an active sample.

It is possible to construct an experiment that shows this behaviour. Choose
a selector and a consumer, such that the consumer can produce all of the
solutions of the consumer, plus some solutions that the selector cannot
represent. More formal: the hypothesis space of the selector should be a
proper subset of the hypothesis space of the consumer. Next, construct a
classiĕcation problem where the optimal solution for the selector is differ-
ent from the optimal solution of the consumer. Run the experiment: use
importance-weighted active learning to select samples, train a consumer
on the active selection and a consumer on a random selection of the same
size. Measure the errors of both classiĕers on a held-out test set. For small
sample sizes, expect the performance of a consumer trained on a random
sample selection to be better than the performance of the consumer trained
on the active selection.

..
1%

.
49%

.
49%

.
1%

Figure 7: A simple 1D dataset. Most of the
samples are in the middle clusters, each
of the clusters on the side has 1% of the
samples.

For example, consider a one-dimensional two-class dataset (Figure 7)
with four clusters in a +−+− pattern: a tiny cluster of the + class, a large
cluster of −, an equally large cluster of + and a tiny cluster of −. e optimal
decision boundary for a linear classiĕer is in the middle between the two
large clusters. It will misclassify the two tiny clusters, but that is inevitable.
A more sophisticated classiĕer can improve on the performance of the
simple classiĕer if it assigns those clusters to the correct class.

Active learning with the linear classiĕer as the selector selects most sam-
ples from the area near the middle, since that is where the linear classiĕer
can be improved. As a result, the active sample selection does not have
many examples from the tiny clusters. is makes it harder for the sophis-
ticated classiĕer to learn the correct classiĕcation for those areas. With the
random selection, where the samples from the tiny clusters have not been
undersampled, the sophisticated classiĕer would have a better chance to
assign the correct labels to the tiny clusters. In this example the expected
performance with random sampling is better than with active learning: the
sample selection from active learning is not reusable.

Plots of the learning curve (Figure 8) show this effect in an experiment
with the linear Vowpal Wabbit as the selector and a support vector machine
with a radial basis function kernel as the consumer. e plots show the
results of experiments with different values for the parameter C0, used
in the deĕnition of the selection probability in the Vowpal Wabbit. As
follows from the deĕnition of the selection probability, the parameter C0

determines the aggressiveness of the active learner. If C0 is very small, the
selection probabilities will be smaller: the number of selected samples will
be small, too. For larger C0, the selection increases and so does the number
of selected samples. At some point the selection probabilities are so large
that the active learner will include every sample in its selection, and there is
no longer any difference between the active and random selections. ese
extreme cases are not representative for real active learning problems.
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As predicted, the selection by the simple linear selector is of limited use
to the more complex radial-basis support vector machine. Foreign-selection
with this combination of classiĕers leads to results that are worse than those
of random sampling. e effect is at its strongest at small sample sizes, but
is still noticeable at larger the sample sizes. e number of labelled samples
can increase for two reasons: because the number of unlabelled examples is
larger, or because the C0 parameter is higher. In both cases the number of
samples from undersampled areas increases and the consumer will receive
more information to make a good decision on the samples in the corners.
Beyond this crossover point the active learner could perform better than
random sampling, even if it undersamples some important areas, because
the extra efficiency in the other areas more than compensates for the loss of
precision. Whether and when this crossover point occurs depends on the
circumstances.
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Figure 8: e mean test error of a radial
basis support vector machine classiĕer
trained on samples selected by the Vowpal
Wabbit importance-weighted active
learning (IWAL) algorithm. e error
bars indicate the standard deviation of the
means. e dataset is the dataset shown in
Figure 7.
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7 Experiments

Do the theoretical problems discussed in the previous sections also occur
in practice? is section presents the results of reusability experiments I
did with several classiĕers on ĕve datasets, from the UCI Machine Learning
Repository and the Active Learning Challenge 2010. I used three selec-
tion strategies: random sampling, uncertainty sampling and importance-
weighted active learning. To evaluate the contribution of importance
weighting to the results, I also looked at importance-weighted active learn-
ing without importance weights, using the same sample selection but with
the importance weights set to 1.

e datasets I used are not representative for real-world problems, and
neither are these experiments. ese experiments are not intended to make
any general predictions about reusability in practical applications – mak-
ing such predictions would be very hard, if not impossible. Rather, these
experiments are intended to discover if the reusability problems discussed
before and demonstrated with hand-craed datasets, also occur with inde-
pendent datasets. e UCI datasets may be unrepresentative and sometimes
synthetic, but at least they are not designed to cause reusability problems.

Note that the results I present here are the results for foreign-selection.
e active learning results on the following pages may seem disappointing,
but they do not show the results for self-selection; the results of importance-
weighted active learning with self-selection may or may not be different.

In the rest of this section, I ĕrst provide more detail about the datasets,
the sample selection strategies, the classiĕers and the procedure I followed
for my experiments. en I discuss the results, illustrated by the most
interesting of the learning curve graphs.

Datasets

I used ĕve datasets for these experiments. ree datasets come from the
UCI Machine Learning Repository (Frank and Asuncion, 2010): car,
bank and mushroom. Two other datasets come from the Active Learning
Challenge 2010 Ƭ: alex, a synthetic dataset, and ibn_sina, from a real- 1 http://www.causality.inf.ethz.

ch/activelearning.phpworld handwriting recognition problem. Table 2 shows some statistics about
these datasets. All datasets are two-class classiĕcation problems.

Dataset Source Features Examples Positive Test proportion
car UCI 6, categorical 1728 30.0% 10%
bank UCI 16, categorical, numerical 4521 11.5% 10%
mushroom UCI 20, categorical 8124 51.8% 20%
alex Active Learning Challenge 11, binary 10000 73.0% 20%
ibn_sina Active Learning Challenge 92, binary, numerical 20722 37.8% 20%

Table 2: Statistics of the datasets used in
these experiments.e car evaluation dataset is a somewhat synthetic dataset. e exam-

ples were derived from a hierarchical decision model, so there is exactly
one example for each feature combination. is makes it an unrealistic
choice for active learning, since active learning tries to exclude examples
that are similar and depends on the density distribution of the samples.

http://www.causality.inf.ethz.ch/activelearning.php
http://www.causality.inf.ethz.ch/activelearning.php
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In this dataset there are no duplicates and the density distribution may be
distorted. e alex dataset is also synthetic, but in a different way: it is a
toy dataset generated with a Bayesian network model for lung cancer. is
might mean that the density distribution is closer to that of real data.

e datasets are small, perhaps too small for active learning. Active
learning expects large datasets and the analysis oen assumes an unlimited
supply of unlabelled data. e Ibn Sina (ibn_sina) dataset is perhaps
the closest to a real active learning problem: it is a very large dataset that
contains real data, based on a handwriting recognition problem where
Arabic words must be recognised in ancient manuscripts.

Sample selection

In these experiments, I compared random sampling, uncertainty sampling
and importance-weighted active learning. e only practical implementa-
tion of importance-weighted active learning is the Vowpal Wabbitƭ, a fast 2 http://hunch.net/~vw/

open-source program for online learning. e Vowpal Wabbit creates linear
classiĕers with or without active learning. I used a modiĕed version for my
experiments: one that produces sample selections instead of classiĕers and
that includes uncertainty sampling as an alternative active learning strategy.
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Figure 9: e sample selection size of
importance-weighted active learning
depends on the parameter C0, but it is also
a random variable. is graph shows how
the average sample size for the car dataset
increases for higher values of C0. I chose
the range of C0 large enough to include
both the very small and the very large
sample selections. In practice you would
choose a C0 from the middle.

e selector in these experiments is always a linear classiĕer, the only
type the Vowpal Wabbit has. e selection strategy is either random sam-
pling, uncertainty sampling or importance-weighted active learning. For
uncertainty sampling it is easy to get a sample selection of a certain size:
simply pick the ĕrst n samples from the selection. In importance-weighted
active learning the number of samples depends on the parameter C0 and on
chance, but the random component of the selection means that the actual
number of samples varies between different iterations (Figure 9).

From the three selection strategies, only importance-weighted active
learning uses importance weighting. To determine the effect of the impor-
tance weights, I copied the selections from importance-weighted active
learning and set the importance weights to 1 for all examples. is selection
strategy is listed as ‘IWAL (no weights)’ in the graphs.

Classiĕers

e selector is always a linear classiĕer, but I used a larger range of clas-
siĕers for the consumer. I used R (R Development Core Team, 2012) to
experiment with six classiĕers, all with support for importance weights.
Most classiĕers are from the locClass package (Schiffner and Hillebrand,
2010). I use their R function name to identify them:

• Linear regression (lm), probably the most similar to the linear model in
the Vowpal Wabbit. is would be the fisherc in PRTools.

• Linear discriminant analysis (lda), also a linear classiĕer but based on
different principles.

• Quadratic discriminant analysis (qda).

• Support vector machines (wsvm-linear), using a third approach to
linear classiĕcation.

http://hunch.net/~vw/
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• Support vector machines with a third-degree polynomial kernel (wsvm-poly3).

• Support vector machines with a radial-basis kernel (wsvm-radial).

Unfortunately, not every classiĕer worked on every dataset. Especially the
LDA and QDA classiĕers oen complained about singular data. In these
cases there are no results for these classiĕer/dataset pairs.

In some cases the sample selection only had samples from one class,
something that is more likely to happen with smaller sample sizes. Since
that made it impossible to train a classiĕer, I removed these iterations from
the results.

Implementation

I did the experiments with the Vowpal Wabbit for the selection and the R
package for the ĕnal classiĕers. e experiments followed this procedure:

1. For each iteration, before each selection, split the data in a training and
test set.

2. For the random selection (Random): shuffle the training set and select
the ĕrst n samples, for n at ĕxed intervals from only a few samples to
every available sample.
For the uncertainty selection (US): use the Vowpal Wabbit to rank the
samples. Select the ĕrst n samples, for n from small to large.
For importance-weighted active learning (IWAL): use the Vowpal Wabbit
with C0 values from 10−9 to 10−2. For the datasets in these experiments
this range of C0 produces sample selections with only a few samples,
selections that include every available sample and everything in between.
For IWAL without weights, use the IWAL selection but with weights set
to a constant 1.

3. Train each of the classiĕers on each sample selection. For each combina-
tion, calculate the error on the test set.

Results

On the following pages, I show a selection of the learning curves for these
experiments. e lines show the mean classiĕcation error on the test set, the
semi-transparent bands indicate the standard deviation of the mean.

For random sampling and uncertainty sampling these plots are straight-
forward: I calculate the mean for each value of n. e calculations for
importance-weighted active learning are more complicated. In importance-
weighted active learning the number of samples is a random variable: the
sample sizes are spread out (Figure 9). ere is seldom more than one value
at a speciĕc sample size. To get useful data points for these experiments, I
grouped the results for the same C0 and calculated the mean and standard
deviation. I show the group means at the median sample size for that C0.

When interpreting these graphs, be aware that the results at the max-
imum sample sizes may not representative for the behaviour of the algo-
rithms on real data. In these experiments there is a limited amount of data,
so it is possible to select and label every example. In practice this would be
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different, as there would be more samples than could ever be labelled. On
the following pages, most learning curves end in the same point. When ev-
ery sample is selected there is no difference between learning strategies. For
this reason it may be best to look at the middle section of each graph: more
than one or two samples, but less than the maximum number of samples.

The learning curves of the polynomial and radial-basis support vector
machines on the Ibn Sina dataset (Figure 10) show the result that you hope
for. e sample selection of importance-weighted active learning are very
reusable for the polynomial kernel: the samples are more useful than those
of random sampling. e radial-basis kernel does not perform better with
active learning, but also not much worse; uncertainty sampling, however,
does not work well. ese are good reusability results for importance-
weighted active learning. It is hard to say why these classiĕers show these
results: apparently, on this dataset, they are interested in similar examples.
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Figure 10: Positive results of importance-
weighted active learning on the Ibn Sina
dataset with polynomial and radial-basis
support vector machines.

In other cases the result of importance-weighted active learning is close
to that of random sampling (Figure 11), while uncertainty sampling is
worse. e results of uncertainty sampling are even worse than in Ibn Sina
results shown above. is could be due to the missed cluster problem: the
shape of the line suggests that uncertainty sampling is exploiting a local
optimum, and only selects examples from other areas aer it has labelled
every example around its initial decision boundary. Importance-weighted
active learning, on the other hand, looks much safer: it is not better than
random sampling, but also not much worse.
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Figure 11: On the mushroom dataset,
importance-weighted active learning has
an advantage over uncertainty sampling,
which may have found an instance of the
missing cluster problem. Similar behaviour
can be seen in other datasets.
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However, importance-weighted active learning can also perform worse
than the other sampling methods (Figure 12). is shows that the sample
selection by importance-weighted active learning is not always reusable: the
result that was predicted earlier in this paper.
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Figure 12: Sometimes importance weight-
ing is the problem: removing the weights
from the importance-weighted selection
improves the results. is happens most
oen with LDA/QDA and on the Alex
dataset and could be due to the instability
that is introduced by the large importance
weights.

e graphs in ĕgure 12 show another interesting result: importance weight-
ing is not that good. ere are quite a few examples where it helps to re-
move the importance weights. is oen happens with LDA and on the
Alex dataset. Perhaps this is a result of the variability from the large impor-
tance weights, the problem discussed earlier in this paper. It is curious to
see that when there is no reusability for importance-weighted active learn-
ing, the unweighted selection oen does show reusability. Unfortunately,
removing the importance weights is not an option: there are also examples
where importance-weighted active learning does work but the unweighted
version does not (e.g., Figure 10).

From these results, it becomes clear that importance-weighted active learn-
ing is not a solution for the reusability problem. ere are certainly cases
where the samples are reusable. From the experiments discussed here, one
could even get the impression that it is reusable in more cases than uncer-
tainty sampling. However, there are too many examples where the selection
from importance-weighted active learning is not reusable to maintain that it
solves the reusability problem.

A second, somewhat discouraging conclusion from these experiments
is that importance weighting is not always helpful. e bias correction may
be correct on average, but in individual sample selections it is imprecise. As
predicted in the previous sections, the variability that is introduced by the
large importance weights sometimes leads to a performance that is much
worse than the performance without the weights.

8 Conditions for reusability

e theoretical discussion and the experiments show that there is no sample
reusability between every pair of classiĕers on every possible problem, but
also that there are combinations where there is sample reusability. When
can a selector-consumer pair guarantee good results? is section explores
possible conditions for sample reusability.
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Hypothesis spaces and hypotheses

LetHsel andHcons be the hypothesis spaces of the selector and consumer,
respectively. e hypothesis space is the set of all hypotheses that a classiĕer
algorithm can form: for example, the hypothesis space of a linear classiĕer
on a two-dimensional problem is the set of all lines. Let err (h, S) denote the
(negative) performance of a hypothesis h on a sample selection S, where a
smaller err (h, S) is better. If S is an importance-weighted sample selection,
err (h, S) is the importance-weighted error. Let err (h) be the expected per-
formance of hypothesis h on new, unseen data from the true distribution.

Deĕne the optimal hypothesis for the selector, h∗sel, and the optimal
hypothesis for the consumer, h∗cons, as the hypotheses that minimise the
expected error on unseen data:

h∗sel = argmin{err (h) ∶ h ∈ Hsel}
h∗cons = argmin{err (h) ∶ h ∈ Hcons}

Let SAL,n and SRD,n be the sample selections of n labelled samples, made
by active learning (AL) and random sampling (RD), respectively. Note that
for importance-weighted active learning, SAL,n includes importance weights
and err (h, SAL,n) is the importance-weighted error. Use hsel,AL,n, hsel,RD,n,
hcons,AL,n and hcons,RD,n to denote the optimal hypotheses of the selector and
consumer on these sample selections:

hsel,AL,n = argmin{err (h, SAL,n) ∶ h ∈ Hsel}
hsel,RD,n = argmin{err (h, SRD,n) ∶ h ∈ Hsel}

hcons,AL,n = argmin{err (h, SAL,n) ∶ h ∈ Hcons}
hcons,RD,n = argmin{err (h, SRD,n) ∶ h ∈ Hcons}

Assume that the classiĕer indeed minimises err (h, S), that is, that it min-
imises the empirical risk and does indeed select these hypotheses when
given SAL,n or SRD,n.

Expected error and sample reusability

Before deĕning any conditions for reusability, we should take a closer look
at the hypotheses that are selected by active learning and by random sam-
pling. More speciĕc, we should derive the expected error of these hypothe-
ses, both on the active and random sample selections and on unseen data.
Sample reusability is deĕned in terms of these expected errors.

First, note that random sampling gives unbiased estimates of the error:
E [err (h, SRD,n)] = err (h), the expected error of a hypothesis h on a ran-
dom sample selection is equal to the expected error on unseen data. Or:
the empirical risk averaged over all possible random sample selections is
equal to the true error. is means that the optimal hypothesis h∗cons – the
hypothesis with the smallest expected error on unseen data – will also have
the smallest expected error on the random sample selection:

E [err (h∗cons, SRD,n)] = err (h∗cons)

= min{err (h) ∶ h ∈ Hcons}
= min{E [err (h, SRD,n)] ∶ h ∈ Hcons}
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Importance-weighted active learning has the same property. Because it
uses importance weighting, importance-weighted active learning produces
an unbiased estimator of the error, i.e., E [err (h, SAL,n)] = err (h) (Beygelz-
imer et al., 2009). e average err (h, SAL,n) over all possible importance-
weighted sample selections SAL,n is equal to the expected error on unseen
data. (Note that SAL,n includes importance weights, so err (h, SAL,n) is the
importance-weighted error.) en the expected error of the optimal hy-
pothesis h∗cons will also be optimal on the importance-weighted sample:

E [err (h∗cons, SAL,n)] = err (h∗cons)

= min{err (h) ∶ h ∈ Hcons}
= min{E [err (h, SAL,n)] ∶ h ∈ Hcons}

In both cases, with importance-weighted active learning and random
sampling, the optimal hypothesis has the lowest expected error on the
sample selection. is does not mean that the optimal hypothesis will also
be selected. e hypotheses hcons,RD,n and hcons,AL,n are the hypotheses with
the lowest error on the sample selection. e optimal hypothesis has the
best expected error and it will have the smallest error if the sample size is
unlimited, but in an individual sample selection with a limited size there
may be another hypothesis that has a smaller error on the training set. is
difference is relevant for sample reusability.

Since the selected hypotheses hcons,RD,n and hcons,AL,n are not optimal,
they will have a larger expected error than the optimal hypothesis h∗cons:

err (hcons,RD,n) = err (h∗cons) + εcons,RD,n

err (hcons,AL,n) = err (h∗cons) + εcons,AL,n

where εcons,RD,n and εcons,AL,n represent the extra error introduced by the se-
lection strategy and the sample size of random sampling and active learning.

Similarly, the hypotheses selected by the selector, hsel,RD,n and hsel,AL,n

will also have an expected error that is higher than h∗sel:

err (hsel,RD,n) = err (h∗sel) + εsel,RD,n

err (hsel,AL,n) = err (h∗sel) + εsel,AL,n

where εsel,RD,n and εsel,AL,n represent the extra error introduced by the selec-
tion strategy and the sample size of random sampling and active learning.

If the active learner is functional, it should produce hypotheses that
are better than random sampling, at least for the selector. For a functional
active learner, the active hypothesis hsel,AL,n is expected to have a lower error
than the random hypothesis hsel,RD,n for an equal sample size, so

err (hsel,AL,n) ≤ err (hsel,RD,n)

which implies that εsel,AL,n ≤ εsel,RD,n.
Following the deĕnition of reusability, there is sample reusability with a

consumer if the hypothesis produced by active learning is not worse than
the hypothesis produced by random sampling:

sample reusability if err (hcons,AL,n) ≤ err (hcons,RD,n)
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ere is sample reusability if εcons,AL,n ≤ εcons,RD,n. Assume that the active
learner is functional, i.e., that εsel,AL,n ≤ εsel,RD,n. Does that also imply that
εcons,AL,n ≤ εcons,RD,n, i.e., that there is sample reusability?

e rest of this section tries to answer to this question, to formulate
conditions that guarantee that there is sample reusability between a pair of
classiĕers. Note that the conditions should guarantee reusability: it is not
enough to have reusability in most problems, the conditions should be such
that, for classiĕer pairs that meet them, εcons,AL,n ≤ εcons,RD,n on all problems.

Necessary condition 1: Hcons ⊆ Hsel

e ĕrst conditions that is necessary to guarantee sample reusability is that
the hypothesis space of the consumer is a subset of the hypothesis space
of the selector. Suppose that the hypothesis space of the consumer is not a
subset of the hypothesis space of the selector, so thatHcons/Hsel ≠ ∅.

e active selection is focused on the best hypothesis inHsel, to ap-
proximate h∗sel and to make sure that err (h∗sel, SAL,n) is better than the
err (h, SAL,n) of every other hypothesis h ∈ Hsel. With a limited number
of samples, more focus on err (h∗sel)means less focus on other hypothe-
ses: the active learner undersamples some areas of the sample space. e
hypotheses inHcons/Hsel are completely new. e active sample selection
may include some information about these hypotheses, but that is uncer-
tain and there will be problems where little or no information is available.
e random sample selection, on the other hand, did not focus onHsel and
therefore did not have to focus less onHcons: it did not undersample any
area. In those cases it is likely that the random sample selection provides
more information aboutHcons than the active sample selection.

..

Hsel

.

Hcons

.

h∗sel

.

h∗cons

Figure 13: If h∗cons ∉ Hsel, the active selec-
tion may not have enough information to
ĕnd the optimal hypothesis inHcons/Hsel,
the grey area: the active learner focused
on h∗sel and did not need information for
hypotheses outsideHsel.

is can be a problem in several ways. If the optimal hypothesis h∗cons is
one of the new hypotheses, i.e., if h∗cons ∈ Hcons/Hsel (Figure 13), the active
learner has less information to ĕnd the best hypothesis in that area than the
random sample. It is likely that there are problems where the hypothesis
selected by active learning is worse than the hypothesis selected by random
sampling, i.e., where err (hcons,AL,n) > err (hcons,RD,n), which means that
εcons,AL,n > εcons,RD,n and there is no sample reusability.
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h

Figure 14: Even if h∗cons ∈ Hsel, the active
selection may not have enough information
to ĕnd h∗cons: there may not be enough
information to reject every hypothesis in
the grey area. Does it know that h is not
optimal?

Even if the optimal hypothesis h∗cons is one of the hypotheses inHsel – and
even if h∗cons = h∗sel – active learning might still select the wrong hypothesis
(Figure 14). e active selection may not have sufficient information to see
that every new hypothesis inHcons/Hsel is worse: there are problems where
the information in the active selection is such that there is a hypothesis
h ∈ (Hcons/Hsel) that, on the active sample selection, is better than h∗cons.
is might happen to random samples as well, of course, but it is more
likely to happen with the active selection. In that case, err (hcons,AL,n) <
err (hcons,RD,n), which implies that εcons,AL,n > εcons,RD,n and that there is no
sample reusability.

Apparently, reusability can not be guaranteed if the consumer can
ĕnd hypotheses that the selector did not have to consider. ere may be
reusability in individual cases, but in general,Hcons ⊆ Hsel is a necessary
condition for reusability.
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Necessary condition 2: h∗sel ∈ Hcons

A second condition is that the optimal hypothesis h∗sel for the selector should
also be in the hypothesis space of the consumer. Suppose that this is not the
case, thatHsel ⊇ Hcons, but that h∗sel ∉ Hcons (Figure 15).

..

Hsel
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Hcons
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h∗sel
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Figure 15: If h∗sel ∉ Hcons, the selector has
enough samples to show that h∗sel is better
than any hypothesis inHsel. ere may not
be enough information to optimise and ĕnd
h∗cons inHcons.

en h∗cons was one of the hypotheses that were available to the selector:
h∗cons ∈ Hsel. But it is not the optimal solution inHsel, and that may be a
problem. ere will be enough examples to show that h∗sel was better than
h∗cons, since h∗cons was available to the active learner but was not selected. But
to be selected as h∗cons, there should be examples in the sample selection
that show that the hypothesis is better than any other h ∈ Hcons. ere
is no guarantee that that information is not available: since it was not a
question that the selector needed to answer, the examples that are needed to
answer the question may not have been selected. ere must be problems
where the random sample provides more information near h∗cons than the
active selection. In that case it is likely that hcons,RD,n is closer to h∗cons than
hcons,AL,n. is means that err (hcons,AL,n) > err (hcons,RD,n), that εcons,AL,n >
εcons,RD,n and that there is no reusability.

Apparently, reusability can not be guaranteed if the consumer ĕnds a
different hypothesis than the selector. ere may be reusability in individual
cases, but in general, h∗sel ∈ Hcons is a necessary condition for reusability.

Sufficient conditions?

e two conditions are necessary to guarantee sample reusability: without
Hsel ⊇ Hcons and h∗sel ∈ Hcons there may be sample reusability in some or even
in many problems, but not in all – if there is any reusability, it is due to luck.
To guarantee reusability the classiĕers need to meet these two conditions,
and the conditions are quite strong. e ĕrst condition requires that the
selector is more powerful than the consumer. e second condition requires
that this extra power is not useful: the selector should not ĕnd a solution
that is better than the solution of the consumer. As a result, the conditions
can probably only be met by classiĕers that are so similar that they produce
the same classiĕer.

e two necessary conditions do much to improve the chance of reusabil-
ity, but they are still not sufficient to make a guarantee. e condition
h∗sel ∈ Hcons requires that the selector and the consumer converge to the same
hypothesis, but that is only true if there is an inĕnite sample selection. In
practice, reusability should happen at limited sample sizes.

It may be possible to ĕnd a condition that guarantees reusability at lim-
ited sample size. Here is a condition that can do this – although it may be
stronger than absolutely necessary. Consider the situation at a sample size
of n samples. e conditionHsel ⊇ Hcons implies that the selector has access
to any hypothesis of the consumer. en the best hypothesis of the con-
sumer has an error on the current sample selection that is at least as large as
the error of the best hypothesis of the selector:

err (hsel,AL,n, SAL,n) ≤ err (hcons,AL,n, SAL,n)
err (hsel,AL,n, SAL,n) ≤ err (hcons,AL,n, SAL,n)
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e importance weights in the sample selection make the error on SAL,n an
unbiased estimator for the error on unseen data from the true distribution,
i.e., E [err (h, SAL,n)] = err (h), so the previous inequality can be written as

err (hsel,AL,n) ≤ err (hcons,AL,n)

e same holds for random sampling, so

err (hsel,RD,n) ≤ err (hcons,RD,n)

Since the active learner is assumed to be functional, the expected error of
the classiĕer selected by self-selection should be better than the expected
error with random sampling:

err (hsel,AL,n) ≤ err (hsel,RD,n)

but there is only reusability if the classiĕer of the consumer is better with
active learning than with random sampling, that is, if

err (hcons,AL,n) ≤ err (hcons,RD,n)

One case where this is guaranteed is if the expected errors of the selector
and consumer hypotheses are the same. en

err (hsel,AL,n) = err (hcons,AL,n)
err (hsel,RD,n) = err (hcons,RD,n)

err (hcons,AL,n) ≤ err (hcons,RD,n)

is is true ifHcons contains both hsel,AL,n and hsel,RD,n.
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Figure 16: One situation where reusability
is guaranteed: Hcons should contain all
intermediate hypotheses hsel,AL,n on the
way to h∗sel = h∗cons.

In other words: the hypothesis space of the consumer should not only
contain the optimal hypothesis of the selector, but should also contain any
intermediate hypotheses (Figure 16). Reusability can be guaranteed if the
consumer can follow the same path towards the solution as the selector.

This result may not be very useful: it says that you can guarantee reusability
if the selector and the consumer that are almost or completely the same.
at is the deĕnition of self-selection. ere is some room between the two
required conditions and this sufficient condition, so there might be a less
restrictive condition that satisĕes err (hcons,AL,n) ≤ err (hcons,RD,n) but does
not require the two classiĕers to be the same. at, however, might require
additional knowledge of the speciĕc classiĕers.

An alternative could be to use a more probabilistic approach to the
reusability question. Instead of asking for conditions that can guarantee
reusability for every possible problem – which, as this section shows, leads
to a discussion of the few exceptions where it does not work – it might be
enough to ĕnd a condition that predicts reusability in most problems, but
just not in all.

is would ĕt in with the proofs of the importance-weighted active
learning algorithm itself. Beygelzimer et al. (2010) do not provide absolute
guarantees, but give conĕdence bounds of the performance of their algo-
rithm relative to random sampling. It might be possible to provide similar
bounds that predict that, with a certain probability, the performance of
importance-weighted active learning with foreign-selection is not much
worse than the performance of random sampling. is would probably
require strong assumptions about the datasets.



   -   22

9 Discussion and conclusion

Active learning is a wonderful idea. Its promise to deliver better models at
a fraction of the cost is very attractive. But active learning has a dark side –
in fact, rather many dark sides. e methods that work for the datasets in a
study may not work so well on a real dataset, and active learning might give
results that are much worse than random sampling. It is hard to evaluate the
quality of the sample selection when it is complete, and it is even harder to
predict the result before starting the sampling. is unpredictability makes
it difficult to justify the use of active learning.

Recent developments in importance-weighted active learning have re-
moved some of the problems. It has a random component, which helps to
prevent the missed cluster problem, and it has importance weighting, which
helps to remove part of the bias in the sample selection. e behaviour of
the algorithm is also described theoretically: there are proven bounds for
the sample complexity, label complexity and the expected error of the active
learner. is makes it one of the best active learning methods developed so
far. e Vowpal Wabbit provides a very efficient implementation. Unfortu-
nately, importance-weighted active learning does not solve every problem.

One of the unsolved questions is that of sample reusability, the topic of
this paper. Sample reusability is important in many practical applications
of active learning, but it is little-understood. It would be useful if sample
reusability could be predicted, but that is a hard problem. e only real
study on this topic (Tomanek and Morik, 2011) has inconclusive results.
Using uncertainty sampling as the active learning strategy, the study found
no pairs of classiĕers that always show reusability and did not ĕnd a reliable
way to predict when reusability would or would not happen. e study
examined a number of hypotheses that could have explained the conditions
for reusability, but none of these hypotheses were true.

In this paper I investigated the sample reusability in importance-weighted
active learning. e authors of the importance-weighted active learning
framework suggest that it produces reusable samples (Beygelzimer et al.,
2011). is is a reasonable idea: because the algorithm solves many of the
problems of uncertainty sampling and the importance weights provide an
unbiased sample selection, it might also improve reusability.

However, in this paper I have argued that even importance-weighted
active learning does not always produce reusable results (Section 6). If the
samples selected for one classiĕer need to be reusable by any other classi-
ĕer, the active sample selection should be at least as good as the random
selection. is is an impossible task, because active learning reduces its label
complexity by being worse than random sampling in some areas of the sam-
ple space – the areas that do not inĘuence the result. But in general, every
sample is interesting to some classiĕer, so nothing can be le out.

Yes, importance weighting creates an unbiased dataset, so the consumer
will always converge to the optimal hypothesis if it is given enough samples
(Section 4). is makes the sample selection of importance-weighted active
learning potentially more reusable than the sample selection of a selection
strategy that can not make this guarantee, such as uncertainty sampling.
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But in the practical deĕnition of reusability, active learning should also
produce a better hypothesis on a limited number of samples, and at limited
sample sizes importance weighting does not work that well (Section 5). It
corrects the bias on average, so the expected sample distribution is correct,
but individual sample selections are still different from the true distribu-
tion. e expected error of the hypothesis selected with an active sample
can be worse than the expected error of the hypothesis selected with a ran-
dom sample. Even worse: in some cases, especially at smaller sample sizes,
importance weighting introduces so much variability that the results with
weighting are worse than the results without.

e results of my practical experiments show that these issues are not
only theoretical (Section 7). ere is certainly reusability in some cases,
for speciĕc combinations of classiĕers and datasets. Importance-weighted
active learning also seems to produce selections that are more reusable than
those of uncertainty sampling – although there are also instances where
the opposite is true. However, the many and unpredictable cases where
the importance-weighted selections are not reusable make it clear that
importance-weighted active learning does not solve the reusability problem.

Are there any certainties in sample reusability? I discussed some of the
conditions that might guarantee sample reusability (Section 8). ese con-
ditions seem to be quite strong: to get reusability on all possible datasets,
the selector and the consumer should be almost exactly the same. For guar-
anteed reusability, the selector should be able to ĕnd all hypotheses of the
consumer and the consumer should be able to ĕnd the optimal hypothesis
of the selector. Even then, if the selector and consumer are not exactly the
same, it is possible to ĕnd that there is no reusability at smaller sample sizes.
is suggests that true universal reusability is impossible.

These are sad conclusions. Importance-weighted active learning may be
better than its predecessors, but it does not solve the reusability problem.
In fact, it may be impossible for any active learner to provide truly reusable
results: universal reusability does not exist. Self-selection might work, but
foreign-selection is tricky. is makes active learning is an inĘexible tool:
useful if used for a single task, but an unreliable source for reusable data.

10 Future work

ere are some alternative points that I did not discuss in this paper, but
that might be worth further study:

• Even if guaranteed reusability on all datasets is impossible, it might still
be possible to ĕnd conditions that predict reusability in a large number
of cases. For most practical applications, there might still be an active
learning method that provides reusability on most datasets and for most
classiĕers. A small reusability risk may be acceptable if the improvements
that active learning can offer are important enough. It would be interest-
ing to have a more probabilistic discussion of reusability, instead of the
all-or-nothing approach that I used here.
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• It might be useful to look at a version of importance-weighted active
learning with multiple selectors. In some applications reusability is
only needed for a speciĕc set of consumers, and if these consumers are
known in advance the selection strategy should be able to create one
sample selection that can be shared by all consumers. Of course, an
active learner with multiple selectors will require more samples than
an active learner with just one selector, but it might still be better than
random sampling.

• Quasi-random sampling is not an active learning method, but perhaps
it could be used to the same effect. Quasi-random sampling, or low-
discrepancy sampling, is a sampling method that has the same expected
distribution as random sampling, but with a more even distribution of
the samples. A random sample selection has random peaks and dips
in its sampling density; quasi-random sampling tries to avoid these
peaks and dips and create a more regular sample selection. is may be
useful at small sample sizes: the classiĕer will receive a more balanced
sample selection with information from the whole sample space, so it
might learn more than it would from a random sample. As the number
of samples increases, however, any positive effects will probably soon
disappear, but it might improve the beginning.

• Finally, there is a strange situation in active learning where the classiĕer
is always assumed to optimise the zero-one classiĕcation error, but in re-
ality may be optimising something else. For example, linear discriminant
analysis maximises the likelihood instead of the classiĕcation error. If
this classiĕer is then used in an active learning strategy that assumes that
it returns the hypothesis that minimises the empirical risk – well, any
result is possible. is issue is not speciĕc to sample reusability, but it
may be relevant for active learning. Importance-weighted active learning
may work with other loss functions than zero-one loss. Further study is
needed to show if this is true, and if this is really an issue.
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